Performance Assessment Through Bootstrap

A new performance evaluation paradigm for computer vision systems is proposed. In real situation, the complexity of the input data and/or of the computational procedure can make traditional error propagation methods infeasible. The new approach exploits a resampling technique recently introduced in statistics, the bootstrap. Distributions for the output variables are obtained by perturbing the nuisance properties of the input, i.e., properties with no relevance for the output under ideal conditions. From these bootstrap distributions, the confidence in the adequacy of the assumptions embedded into the computational procedure for the given input is derived. As an example, the new paradigm is applied to the task of edge detection. The performance of several edge detection methods is compared both for synthetic data and real images. The confidence in the output can be used to obtain an edgemap independent of the gradient magnitude.

[1]  Vinciane Lacroix,et al.  A Three-Module Strategy for Edge Detection , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[3]  Robert M. Haralick,et al.  Performance Characterization in Computer Vision , 1993, BMVC.

[4]  Isaac Weiss,et al.  Smoothed differentiation filters for images , 1992, J. Vis. Commun. Image Represent..

[5]  Azriel Rosenfeld,et al.  Edge Evaluation Using Local Edge Coherence , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Rae-Hong Park,et al.  Multiresolution edge detection techniques , 1995, Pattern Recognit..

[7]  L. J. Kitchen,et al.  The effect of spatial discretization on the magnitude and direction response of simple differential edge operators on a step edge , 1987, Comput. Vis. Graph. Image Process..

[8]  Kim L. Boyer,et al.  On Optimal Infinite Impulse Response Edge Detection Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Peter Meer,et al.  Bootstrap based cooperative processes in computer vision , 1995 .

[10]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  K. Mardia Statistics of Directional Data , 1972 .

[12]  V. Ramesh,et al.  Automatic selection of tuning parameters for feature extraction sequences , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[14]  Margaret M. Fleck Some Defects in Finite-Difference Edge Finders , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Rui J. P. de Figueiredo,et al.  Reply to "On the Localization Performance Measure and Optimal Edge Detection" , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Josef Kittler,et al.  Optimal Edge Detectors for Ramp Edges , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Kim L. Boyer,et al.  "On the localization performance measure and optimal edge detection" , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[19]  Svetha Venkatesh,et al.  Dynamic Threshold Determination by Local and Global Edge Evaluation , 1995, CVGIP Graph. Model. Image Process..

[20]  Robert M. Haralick,et al.  Random perturbation models and performance characterization in computer vision , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Dov Dori,et al.  Quantitative performance evaluation of thinning algorithms under noisy conditions , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[22]  K. Ramesh Babu,et al.  Linear Feature Extraction and Description , 1979, IJCAI.

[23]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[24]  K. Raghunath Rao,et al.  Optimal Edge Detection using Expansion Matching and Restoration , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.