Parametric time series models for multivariate EEG analysis.

Abstract The autoregressive (AR) and mixed autoregressive-moving average (AR-MA) parametric models of stationary time series are of current interest for the purposes of spectral analysis and for the extraction of features for automatic EEG classification. Procedures for computing AR models and a new two-stage least-squares procedure for computing AR-MA models of multivariate time series are shown. The results of spectral estimation of EEGs using the multivariate AR, AR-MA, and conventional windowed periodogram analysis are compared.

[1]  W Gersch,et al.  Automatic classification of multivariate EEGs using an amount of information measure and the eigenvalues of parametric time series model features. , 1977, Computers and biomedical research, an international journal.

[2]  W Gersch,et al.  Spectral analysis of seizures in humans. , 1975, Computers and biomedical research, an international journal.

[3]  E. Robinson,et al.  Recursive solution to the multichannel filtering problem , 1965 .

[4]  L. Zetterberg,et al.  Application of a computer-based model for EEG analysis. , 1971, Electroencephalography and clinical neurophysiology.

[5]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[6]  W. Gersch,et al.  Time Series Methods for the Synthesis of Random Vibration Systems , 1976 .

[7]  H. Akaike Block Toeplitz Matrix Inversion , 1973 .

[8]  Richard H. Jones Prediction of Multivariate Time Series , 1964 .

[9]  W. Gersch Causality or driving in electrophysiological signal analysis , 1972 .

[10]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[11]  H. Akaike A new look at the statistical model identification , 1974 .

[12]  James Durbin,et al.  The fitting of time series models , 1960 .

[13]  H. Akaike Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .

[14]  W. Gersch,et al.  Least squares estimates of structural system parameters using covariance function data , 1974 .

[15]  W. Gersch Spectral analysis of EEG's by autoregressive decomposition of time series , 1970 .

[16]  D. O. Walter,et al.  Spectral analysis for electroencephalograms: mathematical determination of neurophysiological relationships from records of limited duration. , 1963, Experimental neurology.

[17]  H. Akaike Power spectrum estimation through autoregressive model fitting , 1969 .

[18]  P. Whittle On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix , 1963 .

[19]  T. Bohlin Comparison of two methods of modeling stationary EEG signals , 1973 .

[20]  R. Kashyap Maximum likelihood identification of stochastic linear systems , 1970 .

[21]  E. Parzen Some recent advances in time series modeling , 1974 .

[22]  W. Gersch,et al.  Estimation of power spectra with finite-order autoregressive models , 1973 .