Subject-specific and Population-averaged Continuation Ratio Logit Models for Multiple Discrete Time Survival Profiles

SUMMARY Subject-specific and population-averaged continuation ratio logit models are presented for multivariate discrete time survival data. The models characterize data from a psychological experiment by using a quadratic polynomial relationship across time that depends on a time-independent condition. A multivariate normal random effects distribution is imposed on intercept, linear and quadratic terms in the subject-specific model, which is fitted by using a combination of Gibbs sampling and buffered stochastic substitution. Variance components that tend towards 0 are addressed in this context. In addition, generalized estimating equations estimates of the parameters in the population-averaged model are compared with analogous estimates for the mixed effects model.

[1]  S. Fienberg,et al.  Identification and estimation of age-period-cohort models in the analysis of discrete archival data , 1979 .

[2]  Bradley P. Carlin,et al.  An iterative Monte Carlo method for nonconjugate Bayesian analysis , 1991 .

[3]  Barry McDonald,et al.  Estimating Logistic Regression Parameters for Bivariate Binary Data , 1993 .

[4]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[5]  B. Gillespie,et al.  Patterns of lung cancer risk in ex-smokers , 1993 .

[6]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[7]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[8]  R B D'Agostino,et al.  Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study. , 1990, Statistics in medicine.

[9]  Thompson Wa On the treatment of grouped observations in life studies. , 1977 .

[10]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[11]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.

[12]  S. Lipsitz,et al.  Generalized estimating equations for correlated binary data: Using the odds ratio as a measure of association , 1991 .

[13]  D G Clayton,et al.  A Monte Carlo method for Bayesian inference in frailty models. , 1991, Biometrics.

[14]  P. Odell,et al.  A Numerical Procedure to Generate a Sample Covariance Matrix , 1966 .

[15]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[16]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[17]  W. A. Thompson,et al.  On the treatment of grouped observations in life studies. , 1977, Biometrics.

[18]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[19]  S L Zeger,et al.  Generalized linear models with random effects; salamander mating revisited. , 1992, Biometrics.

[20]  L Ryan,et al.  Quantitative risk assessment for developmental toxicity. , 1992, Biometrics.

[21]  B. Efron Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve , 1988 .