Stable Controller Interpolation and Controller Switching for LPV Systems

This paper examines the gain-scheduling problem with a particular focus on controller interpolation with guaranteed stability of the nonlinear closed-loop system. For linear parameter varying model representations, a method of interpolating between controllers utilizing the Youla parametrization is proposed. Quadratic stability despite fast scheduling is guaranteed by construction, while the characteristics of individual controllers designed a priori are recovered at critical design points. Methods for reducing the state dimension of the interpolated controller are also given. The capability of the proposed approach to guarantee stability despite arbitrarily fast transitions leads naturally to application to switched linear systems. The efficacy of the method is demonstrated in simulation using a multi-input, multi-output, nonminimum-phase system, while interpolating between two controllers of different sizes and structures.

[1]  Jakob Stoustrup,et al.  Switching between multivariable controllers , 2004 .

[2]  Andrew G. Alleyne,et al.  Gain Scheduled Control of an Air Conditioning System Using the Youla Parameterization , 2006, IEEE Transactions on Control Systems Technology.

[3]  Keith Glover,et al.  The application of scheduled H∞ controllers to a VSTOL aircraft , 1993, IEEE Trans. Autom. Control..

[4]  J. Shamma Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..

[5]  R.T. Reichert Dynamic scheduling of modern-robust-control autopilot designs for missiles , 1992, IEEE Control Systems.

[6]  Jakob Stoustrup,et al.  An architecture for implementation of multivariable controllers , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[7]  Andrew G. Alleyne,et al.  Generalized Multivariable Gain Scheduling With Robust Stability Analysis , 2005 .

[8]  Dante C. Youla,et al.  Modern Wiener--Hopf design of optimal controllers Part I: The single-input-output case , 1976 .

[9]  Pierre Apkarian,et al.  Advanced gain-scheduling techniques for uncertain systems , 1998, IEEE Trans. Control. Syst. Technol..

[10]  Tor Arne Johansen,et al.  Gain-scheduled control of a solar power plant , 2000 .

[11]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[12]  Jakob Stoustrup,et al.  Starting up unstable multivariable controllers safely , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[13]  John B. Moore,et al.  High Performance Control , 1997 .

[14]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[15]  Daniel J. Stilwell J-Q interpolation for gain scheduled controllers , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[16]  H. Niemann,et al.  Gain scheduling using the Youla parameterization , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[17]  Wilson J. Rugh,et al.  Stability preserving interpolation methods for the synthesis of gain scheduled controllers , 2000, Autom..

[18]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[19]  Henrik Niemann Dual Youla parameterisation , 2003 .

[20]  J. Stoustrup,et al.  Bumpless transfer between observer-based gain scheduled controllers , 2005 .

[21]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[22]  João Pedro Hespanha,et al.  Switching between stabilizing controllers , 2002, Autom..

[23]  W. Xie,et al.  Design of LPV control systems based on Youla parameterisation , 2004 .

[24]  Wilson J. Rugh,et al.  An approach to gain scheduling on fast variables , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[25]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[26]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[27]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[28]  Wilson J. Rugh,et al.  Interpolation of observer state feedback controllers for gain scheduling , 1999, IEEE Trans. Autom. Control..

[29]  A. Packard,et al.  Gain scheduling the LPV way , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[30]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[31]  M. Athans,et al.  Gain Scheduling: Potential Hazards and Possible Remedies , 1992, 1991 American Control Conference.

[32]  Daniel J. Stilwell State-Space Interpolation for a Gain-Scheduled Autopilot , 2001 .

[33]  Stephen P. Boyd,et al.  Structured and Simultaneous Lyapunov Functions for System Stability Problems , 1989 .

[34]  Wilson J. Rugh,et al.  Gain scheduling for H-infinity controllers: a flight control example , 1993, IEEE Trans. Control. Syst. Technol..

[35]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[36]  Tor Arne Johansen,et al.  Speed control design for an experimental vehicle using a generalized gain scheduling approach , 2000, IEEE Trans. Control. Syst. Technol..

[37]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..