Role of Tropical Cyclones in Determining ENSO Characteristics

El Niño‐Southern Oscillation (ENSO) can effectively modulate global tropical cyclone (TC) activity, but the role TCs may play in determining ENSO characteristics remains unclear. Here we investigate the impact of TC winds on ENSO using a suite of Earth system model experiments where we insert TC winds, extracted from a TC‐permitting high‐resolution simulation, into a low‐resolution model configuration with nearly no intrinsic TCs. The presence of TC winds in the model increases ENSO power and shifts ENSO frequency closer to what we observe. TCs lead to an increase of strong to extreme El Niño events seen in observations and not simulated in the low‐resolution model without intrinsic TCs, mainly through enhanced zonal advection feedback and thermocline feedback. Our results indicate that TCs play a fundamental role in producing the ENSO characteristics we experience today in the climate system and point to a two‐way climatological interaction between TCs and ENSO.

[1]  W. G. Strand,et al.  Impact of tropical cyclone wind forcing on the global climate in a fully-coupled climate model , 2022, Journal of Climate.

[2]  Jianping Li,et al.  Feedback of tropical cyclones on El Niño diversity. Part II: possible mechanism and prediction , 2022, Climate Dynamics.

[3]  K. Reed,et al.  TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets , 2021, Geoscientific Model Development.

[4]  W. G. Strand,et al.  An Unprecedented Set of High‐Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change , 2020, Journal of Advances in Modeling Earth Systems.

[5]  M. Mcphaden,et al.  El Niño Southern Oscillation in a Changing Climate , 2020, Geophysical Monograph Series.

[6]  A. Fedorov,et al.  Linking the Madden–Julian Oscillation, tropical cyclones and westerly wind bursts as part of El Niño development , 2019, Climate Dynamics.

[7]  W. G. Strand,et al.  Effects of Model Resolution, Physics, and Coupling on Southern Hemisphere Storm Tracks in CESM1.3 , 2019, Geophysical Research Letters.

[8]  H. Ren,et al.  Effects of Tropical Cyclones on ENSO , 2019, Journal of Climate.

[9]  Cheng Sun,et al.  Tropical cyclones act to intensify El Niño , 2019, Nature Communications.

[10]  Dake Chen,et al.  Linkage Between Westerly Wind Bursts and Tropical Cyclones , 2018, Geophysical Research Letters.

[11]  Hui Li,et al.  Impact of Tropical Cyclones on the Global Ocean: Results from Multidecadal Global Ocean Simulations Isolating Tropical Cyclone Forcing , 2018, Journal of Climate.

[12]  Thomas M. Smith,et al.  Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons , 2017 .

[13]  Hui Li,et al.  Effects of ocean grid resolution on tropical cyclone‐induced upper ocean responses using a global ocean general circulation model , 2016 .

[14]  Paul A. Ullrich,et al.  TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids , 2016 .

[15]  A. Barnston,et al.  Northern hemisphere tropical cyclones during the quasi-El Niño of late 2014 , 2016, Natural Hazards.

[16]  E. Guilyardi,et al.  The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events , 2015, Climate Dynamics.

[17]  Kevin I. Hodges,et al.  Simulation of the Global ENSO–Tropical Cyclone Teleconnection by a High-Resolution Coupled General Circulation Model , 2014 .

[18]  Y. Ham,et al.  ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models , 2014, Climate Dynamics.

[19]  F. Jin,et al.  Recharge Oscillator Mechanisms in Two Types of ENSO , 2013 .

[20]  M. Wheeler,et al.  Impact of Different ENSO Regimes on Southwest Pacific Tropical Cyclones , 2013 .

[21]  Steve Horstmeyer,et al.  El Niño, La Niña, and the Southern Oscillation , 2011 .

[22]  K. Emanuel,et al.  Tropical cyclones and permanent El Niño in the early Pliocene epoch , 2010, Nature.

[23]  Xiu‐Qun Yang,et al.  ENSO frequency change in coupled climate models as response to the increasing CO2 concentration , 2010 .

[24]  Mark A. Cane,et al.  The El Niño-Southern Oscillation Phenomenon , 2010 .

[25]  F. Jin,et al.  Two Types of El Nio Events: Cold Tongue El Nio and Warm Pool El Nio , 2009 .

[26]  A. Sobel,et al.  The influence of natural climate variability on tropical cyclones , 2008 .

[27]  Allan J. Clarke,et al.  An Introduction to the Dynamics of El Nino and the Southern Oscillation , 2008 .

[28]  Kerry A. Emanuel,et al.  Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis , 2007 .

[29]  E. Tziperman,et al.  Modulation of Westerly Wind Bursts by Sea Surface Temperature: A Semistochastic Feedback for ENSO , 2007 .

[30]  F. Jin,et al.  A coupled‐stability index for ENSO , 2006 .

[31]  G. Kiladis,et al.  Observed Relationships between Oceanic Kelvin Waves and Atmospheric Forcing , 2006 .

[32]  K. Emanuel Increasing destructiveness of tropical cyclones over the past 30 years , 2005, Nature.

[33]  Suzana J. Camargo,et al.  Western North Pacific Tropical Cyclone Intensity and ENSO , 2005 .

[34]  Matthieu Lengaigne,et al.  Triggering of El Niño by westerly wind events in a coupled general circulation model , 2004 .

[35]  S. George Philander,et al.  Is El Niño Sporadic or Cyclic , 2003 .

[36]  W. Kessler,et al.  Is ENSO a cycle or a series of events? , 2002 .

[37]  Bin Wang,et al.  How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific(. , 2002 .

[38]  K. Emanuel Contribution of tropical cyclones to meridional heat transport by the oceans , 2001 .

[39]  A. Fedorov,et al.  A Stability Analysis of Tropical Ocean–Atmosphere Interactions: Bridging Measurements and Theory for El Niño , 2001 .

[40]  Bin Wang,et al.  Mechanisms of Locking of the El Niño and La Niña Mature Phases to Boreal Winter , 2001 .

[41]  I. Kang,et al.  A Systematic Approximation of the SST Anomaly Equation for ENSO , 2001 .

[42]  D. Battisti,et al.  A Linear Stochastic Dynamical Model of ENSO. Part II: Analysis. , 2001 .

[43]  J. Chan Tropical Cyclone Activity over the Western North Pacific Associated with El Niño and La Niña Events , 2000 .

[44]  A. Fedorov,et al.  Is El Nino changing? , 2000, Science.

[45]  D. E. Harrison,et al.  On the termination of El Niño , 1999 .

[46]  Eli Tziperman,et al.  Locking of El Nino's Peak Time to the End of the Calendar Year in the Delayed Oscillator Picture of ENSO , 1998 .

[47]  Fei-Fei Jin,et al.  An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model , 1997 .

[48]  L. Hartten Synoptic settings of westerly wind bursts , 1996 .

[49]  E. Tziperman,et al.  Mechanisms of Seasonal – ENSO Interaction , 1995, ao-sci/9508001.

[50]  M. Lander An Exploratory Analysis of the Relationship between Tropical Storm Formation in the Western North Pacific and ENSO , 1994 .

[51]  R. Keen The Role of Cross-Equatorial Tropical Cyclone Pairs in the Southern Oscillation , 1982 .

[52]  E. Tziperman,et al.  Impact of interactive westerly wind bursts on CCSM3 , 2013 .

[53]  Jong,et al.  Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño , 2009 .

[54]  I. Kang,et al.  Successive Modulation of ENSO to the Future Greenhouse Warming , 2008 .

[55]  D. E. Harrison,et al.  Episodes of surface westerly winds as observed from islands in the western tropical Pacific , 1991 .