Global adaptive linear control of the permanent‐magnet synchronous motor

SUMMARY We contribute with a linear time-varying controller for the permanent magnet synchronous motor. We solve the open problem of speed-tracking control by measuring only stator currents and the rotor angular positions, under parametric uncertainty. Integral action is used to compensate for the effects of the unknown load-torque, and adaptation is employed to estimate the unknown parameters. In the case that parameters are known (except for the load), we show that the origin of the closed-loop system is uniformly globally exponentially stable. For the case of unknown parameters, we prove uniform global asymptotic stability; hence, we establish parametric convergence. In contrast to other adaptive control schemes for electrical machines, we use a reduced-order adaptive controller. Indeed, adaptation is used only for the electrical dynamics equations. Moreover, not surprisingly, the closed-loop system has a structure well-studied in adaptive-control literature. Performance is illustrated in a numerical setting. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  M. Malisoff,et al.  Constructions of Strict Lyapunov Functions , 2009 .

[2]  Cristiano Maria Verrelli,et al.  A nonlinear adaptive speed tracking control for sensorless permanent magnet step motors with unknown load torque , 2008 .

[3]  P Tomei,et al.  Observer-Based Speed Tracking Control for Sensorless Permanent Magnet Synchronous Motors With Unknown Load Torque , 2011, IEEE Transactions on Automatic Control.

[4]  R. Ortega,et al.  A semiglobally stable output feedback PI2D regulator for robot manipulators , 1995, IEEE Trans. Autom. Control..

[5]  P. Tomei,et al.  Observer-based speed tracking control for sensorless permanent magnet synchronous motors with unknown load torque , 2010, The XIX International Conference on Electrical Machines - ICEM 2010.

[6]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Aman Behal,et al.  Sensorless rotor velocity tracking control of the permanent magnet stepper motor , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[8]  Antonio Loría,et al.  Relaxed persistency of excitation for uniform asymptotic stability , 2001, IEEE Trans. Autom. Control..

[9]  Jun Hu,et al.  Nonlinear Control of Electric Machinery , 1998 .

[10]  S. Di Gennaro Adaptive output feedback control of synchronous motors , 2000 .

[11]  Antonio Loría,et al.  Uniform Parametric Convergence in the Adaptive Control of Mechanical Systems , 2005, Eur. J. Control.

[12]  Ouassima Akhrif,et al.  Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer , 2000, IEEE Trans. Ind. Electron..

[13]  Werner Leonhard,et al.  Control of Electrical Drives , 1990 .

[14]  D.G. Taylor,et al.  Nonlinear control of electric machines: an overview , 1994, IEEE Control Systems.

[15]  P. Olver Nonlinear Systems , 2013 .

[16]  Aman Behal,et al.  Adaptive partial state feedback control of the induction motor: elimination of rotor flux and rotor velocity measurements , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[17]  Romeo Ortega,et al.  On speed control of induction motors , 1996, Autom..

[18]  John Chiasson,et al.  Modeling and High Performance Control of Electric Machines , 2005 .

[19]  Alejandro Donaire,et al.  On the addition of integral action to port-controlled Hamiltonian systems , 2009, Autom..

[20]  R. Marino,et al.  Adaptive input-output linearizing control of induction motors , 1993, IEEE Trans. Autom. Control..

[21]  Jerome Meisel Principles of Electromechanical Energy Conversion , 1984 .

[22]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[23]  G. J. Retter Matrix and Space-Phasor Theory of Electrical Machines , 1995 .

[24]  Romeo Ortega,et al.  Tuning rules for the PI gains of field-oriented controllers of induction motors , 2000, IEEE Trans. Ind. Electron..