Sampling time-dependent artifacts in single-cell genomics studies

[1]  E. Campo,et al.  Sampling time-dependent artifacts in single-cell genomics studies , 2020, Genome Biology.

[2]  Matthias Heinig,et al.  The single-cell eQTLGen consortium , 2020, eLife.

[3]  Giovanni Iacono,et al.  Sampling artifacts in single-cell genomics cohort studies , 2020, bioRxiv.

[4]  M. Mildner,et al.  Re-epithelialization and immune cell behaviour in an ex vivo human skin model , 2020, Scientific Reports.

[5]  T. Lassmann,et al.  Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows , 2019, Genome Biology.

[6]  Ricardo J. Miragaia,et al.  scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation , 2019, Genome Biology.

[7]  Ryan Lister,et al.  Systematic bias assessment in solid tissue 10x scRNA-seq workflows , 2019, bioRxiv.

[8]  Kieran R. Campbell,et al.  Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses , 2019, Genome Biology.

[9]  Virginia Savova,et al.  An optimized workflow for single-cell transcriptomics and repertoire profiling of purified lymphocytes from clinical samples , 2019, Scientific Reports.

[10]  Kieran R. Campbell,et al.  Dissociation of solid tumour tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses , 2019, bioRxiv.

[11]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[12]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[13]  A. Alatas,et al.  Intrinsic anharmonic localization in thermoelectric PbSe , 2019, Nature Communications.

[14]  L. Foster,et al.  Evaluating measures of association for single-cell transcriptomics , 2019, Nature Methods.

[15]  Beate Vieth,et al.  A systematic evaluation of single cell RNA-seq analysis pipelines , 2019, Nature Communications.

[16]  M. Hemberg,et al.  Challenges in unsupervised clustering of single-cell RNA-seq data , 2019, Nature Reviews Genetics.

[17]  Sarah A Teichmann,et al.  A test metric for assessing single-cell RNA-seq batch correction , 2018, Nature Methods.

[18]  Bertrand Z. Yeung,et al.  Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics , 2018, Genome Biology.

[19]  Zev J. Gartner,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[20]  E. Campo,et al.  Chronic lymphocytic leukemia and mantle cell lymphoma: crossroads of genetic and microenvironment interactions. , 2018, Blood.

[21]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[22]  A. van Oudenaarden,et al.  Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations , 2017, Nature Methods.

[23]  Martin Vingron,et al.  An improved compound Poisson model for the number of motif hits in DNA sequences , 2017, Bioinform..

[24]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[25]  I. Amit,et al.  Single-cell transcriptome conservation in cryopreserved cells and tissues , 2016, Genome Biology.

[26]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[27]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[28]  J. Marioni,et al.  Pooling across cells to normalize single-cell RNA sequencing data with many zero counts , 2016, Genome Biology.

[29]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[30]  Sarah A Teichmann,et al.  Computational assignment of cell-cycle stage from single-cell transcriptome data. , 2015, Methods.

[31]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[32]  H. Dvinge,et al.  Sample processing obscures cancer-specific alterations in leukemic transcriptomes , 2014, Proceedings of the National Academy of Sciences.

[33]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[34]  S. Purcell,et al.  Pleiotropy in complex traits: challenges and strategies , 2013, Nature Reviews Genetics.

[35]  Paul Elliott,et al.  The UK Biobank sample handling and storage validation studies. , 2008, International journal of epidemiology.

[36]  P. Elliott,et al.  The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. , 2008, International journal of epidemiology.

[37]  Robert Gentleman,et al.  Using GOstats to test gene lists for GO term association , 2007, Bioinform..

[38]  G. Karypis,et al.  Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation , 2004, Genes and Immunity.

[39]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[40]  S. Julious,et al.  Confounding and Simpson's paradox , 1994, BMJ.