DYNAMICS OF GALACTIC DISKS AND MERGERS AT z ∼ 1.6: SPATIALLY RESOLVED SPECTROSCOPY WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS

We present 0".2 resolution near-infrared integral field spectroscopy of Hα emission from six star-forming galaxies at z ~ 1.6 (a look-back time of ~9.6 Gyr). These observations were obtained with OSIRIS using the Keck Laser Guide Star Adaptive Optics system. All sources have a compact spatial extent of ~1", with an average half-light radius of r_(1/2) = 2.9 kpc and an average dereddened star formation rate of 22 M⊙ yr^(–1). Based on Hα kinematics we find that these six galaxies are dynamically distinguishable, and we classify them as either irregular/merger or disk candidate systems. We find three systems (HDF-BX1287, HDF-BX1315, and Q1623-BX491) with varying geometries and dynamical properties. Three galaxies (HDF-BMZ1299, Q2343-BX344, and Q2343-BM145) are well fitted by an inclined-disk model with low-velocity residuals (20 to 46 km s^(–1)). An average plateau velocity of ν(p) = 185 km s^(–1) is achieved within 1.0 kpc. The majority of observed velocity dispersions (σ ~ 88 km s^(–1)) can be explained by the residual seeing halo, and are not intrinsic to our sources. However, one irregular and one disk candidate have high-velocity dispersions (σ_(obs) ≳ 200 km s^(–1)) that cannot be solely explained by beam smearing. For two disk candidates, we detect [N II] emission and are able to map the [N II]/Hα ratio on kiloparsec scales. In both cases, [N II] emission is more concentrated than Hα emission (≾0".2), and peak ratios are best explained by the presence of an active galactic nucleus (AGN). These are among the weakest known AGNs at high redshift; however their emission is strong enough to impact high-redshift metallicity studies that use nebular ratios. All disk candidates have likely to be completed only a few orbital periods, and if left unperturbed are excellent candidates to become present-day spiral galaxies.

[1]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization , 2006 .

[2]  G. Neugebauer,et al.  Infrared standard stars , 1982 .

[3]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[4]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[5]  A. Sandage,et al.  The Age of the Oldest Stars in the Local Galactic Disk from Hipparcos Parallaxes of G and K Subgiants , 2003, astro-ph/0307128.

[6]  James E. Larkin,et al.  Integral Field Spectroscopy of High-Redshift Star-forming Galaxies with Laser-guided Adaptive Optics: Evidence for Dispersion-dominated Kinematics , 2007, 0707.3634.

[7]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[8]  A. Coil,et al.  Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.

[9]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[10]  J. Brinchmann,et al.  Metallicities and Physical Conditions in Star-forming Galaxies at z ~ 1.0-1.5 , 2008, 0801.1670.

[11]  Lars Hernquist,et al.  The Angular Momentum of Gas in Protogalaxies. I. Implications for the Formation of Disk Galaxies , 2002 .

[12]  V. Springel,et al.  Formation of a Spiral Galaxy in a Major Merger , 2004, astro-ph/0411379.

[13]  M. Blanton,et al.  Environmental Dependence of Properties of Galaxies in the Sloan Digital Sky Survey , 2006, astro-ph/0611610.

[14]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[15]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[16]  A. Cimatti,et al.  Dynamical Properties of z ~ 2 Star-forming Galaxies and a Universal Star Formation Relation , 2007, 0706.2656.

[17]  H. J. Mo,et al.  The abundance and clustering of dark haloes in the standard ΛCDM cosmogony , 2002 .

[18]  T. D. Wilson,et al.  The Double Nucleus of ARP 220 Unveiled , 1990 .

[19]  Max Pettini,et al.  A Spectroscopic Survey of Redshift 1.4 ≲ z ≲ 3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties , 2006, astro-ph/0609296.

[20]  K. Fuhrmann Nearby stars of the Galactic disk and halo. III. , 1998 .

[21]  Max Pettini,et al.  The Physical Nature of Rest-UV Galaxy Morphology During the Peak Epoch of Galaxy Formation , 2007 .

[22]  J. Wadsley,et al.  THE ROLE OF COLD FLOWS IN THE ASSEMBLY OF GALAXY DISKS , 2008, 0812.0007.

[23]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[24]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[25]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[26]  V. Cardone,et al.  Modelling the Milky Way through adiabatic compression of cold dark matter haloes , 2005, astro-ph/0501567.

[27]  The nature of high-redshift galaxies , 1998, astro-ph/9806228.

[28]  Todd A. Thompson,et al.  Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005 .

[29]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[30]  David Burstein,et al.  Rotation velocities of 16 SA galaxies and a comparison of Sa, SB and SC rotation properties. , 1985 .

[31]  J. Cuby,et al.  Hα Spectroscopy of Galaxies at z > 2: Kinematics and Star Formation , 2003, astro-ph/0303392.

[32]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[33]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[34]  G. Chabrier The Galactic Disk Mass Budget. I. Stellar Mass Function and Density , 2001 .

[35]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[36]  Kyle R. Stewart,et al.  Merger Histories of Galaxy Halos and Implications for Disk Survival , 2007, 0711.5027.

[37]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[38]  The present and future mass of the Milky Way halo , 1999, astro-ph/9906197.

[39]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[40]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[41]  C. Conselice,et al.  The Assembly of Diversity in the Morphologies and Stellar Populations of High-Redshift Galaxies , 2005, astro-ph/0501088.

[42]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[43]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[44]  C. Steidel,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 12/14/05 Hα OBSERVATIONS OF A LARGE SAMPLE OF GALAXIES AT z ∼ 2: IMPLICATIONS FOR STAR FORMATION IN HIGH REDSHIFT GALAXIES 1 , 2006 .

[45]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[46]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[47]  P. P. van der Werf,et al.  Stellar Populations and Kinematics of Red Galaxies at z > 2: Implications for the Formation of Massive Galaxies , 2004, astro-ph/0404471.

[48]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[49]  Rotation Curves of Spiral Galaxies , 2000, astro-ph/0010594.

[50]  Chien Y. Peng,et al.  An Explanation for the Observed Weak Size Evolution of Disk Galaxies , 2006, astro-ph/0612428.

[51]  The white dwarf cooling sequence of the globular cluster messier 4 , 2002, astro-ph/0205087.

[52]  M. McElwain,et al.  Integral Field Spectroscopy of a Candidate Disk Galaxy at z ~ 1.5 Using Laser Guide Star Adaptive Optics , 2006, astro-ph/0612199.

[53]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[54]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[55]  Angular momentum transport and disc morphology in smoothed particle hydrodynamics simulations of galaxy formation , 2006, astro-ph/0601115.

[56]  M. Pettini,et al.  The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.

[57]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[58]  Gyula I. G. Jozsa,et al.  Kinematic modelling of disk galaxies - I. A new method to fit tilted rings to data cubes , 2007 .

[59]  P. T. de Zeeuw,et al.  Kinemetry: a generalization of photometry to the higher moments of the line-of-sight velocity distribution , 2005, astro-ph/0512200.

[60]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[61]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[62]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[63]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[64]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[65]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[66]  Carnegie-Mellon,et al.  A Merger-driven Scenario for Cosmological Disk Galaxy Formation , 2005, astro-ph/0503369.

[67]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[68]  David Crampton,et al.  TMT Science and Instruments , 2008, 0801.3634.

[69]  Andreas Quirrenbach,et al.  OSIRIS: A diffraction limited integral field spectrograph for Keck , 2006 .

[70]  CENTRAL ROTATION CURVES OF SPIRAL GALAXIES , 1999, astro-ph/9905056.