Experimental study of electron impact ionization in field emission-driven microdischarges

Field emission can act as a significant source of primary electrons in direct current microdischarges generated in geometries truly at the microscale (! 1‐10µm). Using field emission as a source of primary electrons, it is possible to produce a stable pre-breakdown Townsend discharge with modestly high current at pressures up to atmospheric. Recent theories for field emission-driven Townsend discharges, or more simply field emission-driven microdischarges, show that the field emission current will be multiplied by electron impact ionization in the electrode gap. In this work, experiments using microfabricated, parallel-plate discharge devices showed that the measured anode current increases exponentially with pressure, consistent with the theory for field emission-driven microdischarges operated in a pre-breakdown regime. Furthermore, extracted average ionization cross-sections on the order of 10 " 19 ‐10 " 20 m 2 are comparable to those predicted by particle-in-cell/Monte Carlo collision simulations of the same experimental conditions.

[1]  K. Jug,et al.  Structure and aromaticity of 14-annulene and 18-annulene , 1987 .

[2]  D. Go,et al.  An analytical formulation for the modified Paschen's curve , 2010 .

[3]  R. Dhariwal,et al.  Electric field breakdown at micrometre separations , 1999 .

[4]  T. Lewis High Field Electron Emission from Irregular Cathode Surfaces , 1955 .

[5]  W. W. Dolan Current Density Tables for Field Emission Theory , 1953 .

[6]  D. Go,et al.  Fundamental properties of field emission-driven direct current microdischarges , 2012 .

[7]  Abbas Semnani,et al.  Pre-breakdown evaluation of gas discharge mechanisms in microgaps , 2013 .

[8]  Phelps,et al.  Anisotropic scattering of electrons by N2 and its effect on electron transport. , 1985, Physical review. A, General physics.

[9]  A. Venkattraman Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas , 2013 .

[10]  C. Duke,et al.  Field Emission through Atoms Adsorbed on a Metal Surface , 1967 .

[11]  Norman C. Tien,et al.  Electrical discharge across micrometer-scale gaps for planar MEMS structures in air at atmospheric pressure , 2008 .

[12]  W. Drachsel,et al.  Observation of ring formation in the field electron emission image pattern of water covered field emitters , 1992 .

[13]  S. Lawton,et al.  Excitation of the b 1Σ+g state of O2 by low energy electrons , 1978 .

[14]  Dimitrios Peroulis,et al.  Direct measurements and numerical simulations of gas charging in microelectromechanical system capacitive switches , 2012 .

[15]  A. Ciszewski,et al.  Interaction of water with field emitter tips , 1995 .

[16]  Alina A. Alexeenko,et al.  Scaling law for direct current field emission-driven microscale gas breakdown , 2012 .

[17]  F. Penning,et al.  The Mechanism of Electrical Discharges in Gases of Low Pressure , 1940 .

[18]  D. Levko Electron kinetics in a microdischarge in nitrogen at atmospheric pressure , 2013 .

[19]  W. Sachtler,et al.  Field-emission study of composite adsorption layers on tungsten and platinum , 1962 .

[20]  J. Andrew Yeh,et al.  Electrical breakdown phenomena for devices with micron separations , 2006 .

[21]  L. Friedland Electron multiplication in a gas discharge at high values of E/p , 1974 .

[22]  J. Gardeniers,et al.  Synthesis and Atmospheric Pressure Field Emission Operation of W18O49 Nanorods , 2008 .

[23]  David B. Go,et al.  A mathematical model of the modified Paschen's curve for breakdown in microscale gaps , 2010 .

[24]  Jin-Woo Han,et al.  Cofabrication of Vacuum Field Emission Transistor (VFET) and MOSFET , 2014, IEEE Transactions on Nanotechnology.

[25]  R. Wallace,et al.  Effect of O2 on the electron emission characteristics of active molybdenum field emission cathode arrays , 1998 .

[26]  Š. Matejčík,et al.  The role of the field emission effect in direct-current argon discharges for the gaps ranging from 1 to 100 µm , 2013 .

[27]  D. Go,et al.  The Coupling of Ion-Enhanced Field Emission and the Discharge During Microscale Breakdown at Moderately High Pressures , 2013, IEEE Transactions on Plasma Science.

[28]  G. V. Shpatakovskaya Semiclassical model of the structure of matter , 2012 .

[29]  F. H. Sanders,et al.  Measurement of the Townsend Coefficients for Ionization by Collision , 1933 .

[30]  D. Go,et al.  Using field emission to control the electron energy distribution in high-pressure microdischarges at microscale dimensions , 2013 .

[31]  Brian J. Simonds,et al.  Submicron gap capacitor for measurement of breakdown voltage in air , 2006 .

[32]  V. Zakharov,et al.  Nonequilibrium Kolmogorov-type particle distributions and their applications , 2010 .

[33]  S. Garimella,et al.  Planar microscale ionization devices in atmospheric air with diamond-based electrodes , 2009 .

[34]  Suresh V. Garimella,et al.  Low-voltage ionization of air with carbon-based materials , 2005 .

[35]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[36]  Y. Davydov On the First Townsend Coefficient at High Electric Field , 2004, IEEE Transactions on Nuclear Science.

[37]  C. Spindt,et al.  Physical properties of thin‐film field emission cathodes with molybdenum cones , 1976 .

[38]  R. Hill The adsorption of water on tungsten , 1961 .

[39]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[40]  B. Cai,et al.  MEMS-based microelectrode system incorporating carbon nanotubes for ionization gas sensing , 2007 .

[41]  S. J. Kim,et al.  Gas sensors based on Paschen's law using carbon nanotubes as electron emitters , 2006 .