Modeling Haplotype Block Variation Using Markov Chains

Models of background variation in genomic regions form the basis of linkage disequilibrium mapping methods. In this work we analyze a background model that groups SNPs into haplotype blocks and represents the dependencies between blocks by a Markov chain. We develop an error measure to compare the performance of this model against the common model that assumes that blocks are independent. By examining data from the International Haplotype Mapping project, we show how the Markov model over haplotype blocks is most accurate when representing blocks in strong linkage disequilibrium. This contrasts with the independent model, which is rendered less accurate by linkage disequilibrium. We provide a theoretical explanation for this surprising property of the Markov model and relate its behavior to allele diversity.

[1]  G. Hardy MENDELIAN PROPORTIONS IN A MIXED POPULATION. , 1908 .

[2]  H. Geiringer On the Probability Theory of Linkage in Mendelian Heredity , 1944 .

[3]  N. Risch,et al.  A comparison of linkage disequilibrium measures for fine-scale mapping. , 1995, Genomics.

[4]  Yuval Rabani,et al.  A computational view of population genetics , 1995, STOC '95.

[5]  A. Sinclair,et al.  A computational view of population genetics , 1998 .

[6]  M. McPeek,et al.  Assessment of linkage disequilibrium by the decay of haplotype sharing, with application to fine-scale genetic mapping. , 1999, American journal of human genetics.

[7]  A. Jeffreys,et al.  High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. , 2000, Human molecular genetics.

[8]  E. Boerwinkle,et al.  Recombinational and mutational hotspots within the human lipoprotein lipase gene. , 2000, American journal of human genetics.

[9]  D J Balding,et al.  Bayesian fine-scale mapping of disease loci, by hidden Markov models. , 2000, American journal of human genetics.

[10]  S. P. Fodor,et al.  Blocks of Limited Haplotype Diversity Revealed by High-Resolution Scanning of Human Chromosome 21 , 2001, Science.

[11]  D. Goldstein Islands of linkage disequilibrium , 2001, Nature Genetics.

[12]  C. Sabatti,et al.  Bayesian analysis of haplotypes for linkage disequilibrium mapping. , 2001, Genome research.

[13]  A. Jeffreys,et al.  Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex , 2001, Nature Genetics.

[14]  M. Daly,et al.  High-resolution haplotype structure in the human genome , 2001, Nature Genetics.

[15]  Frank Dudbridge,et al.  Haplotype tagging for the identification of common disease genes , 2001, Nature Genetics.

[16]  Fengzhu Sun,et al.  Haplotype block structure and its applications to association studies: power and study designs. , 2002, American journal of human genetics.

[17]  J. Akey,et al.  Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. , 2002, American journal of human genetics.

[18]  S. Gabriel,et al.  The Structure of Haplotype Blocks in the Human Genome , 2002, Science.

[19]  D J Balding,et al.  Fine-scale mapping of disease loci via shattered coalescent modeling of genealogies. , 2002, American journal of human genetics.

[20]  S. Liu-Cordero Patterns of linkage disequilibrium in the human genome , 2002 .

[21]  D. Gudbjartsson,et al.  A high-resolution recombination map of the human genome , 2002, Nature Genetics.

[22]  †The International HapMap Consortium The International HapMap Project , 2003, Nature.

[23]  Norman Arnheim,et al.  Hot and cold spots of recombination in the human genome: the reason we should find them and how this can be achieved. , 2003, American journal of human genetics.

[24]  S. Tishkoff,et al.  Role of evolutionary history on haplotype block structure in the human genome: implications for disease mapping. , 2003, Current opinion in genetics & development.

[25]  J. Novembre,et al.  Finding haplotype block boundaries by using the minimum-description-length principle. , 2003, American journal of human genetics.

[26]  J. Wall,et al.  Assessing the performance of the haplotype block model of linkage disequilibrium. , 2003, American journal of human genetics.

[27]  G. Abecasis,et al.  Using haplotype blocks to map human complex trait loci. , 2003, Trends in genetics : TIG.

[28]  T. Paunio,et al.  The interval of linkage disequilibrium (LD) detected with microsatellite and SNP markers in chromosomes of Finnish populations with different histories. , 2003, Human molecular genetics.

[29]  Kenneth H Buetow,et al.  Genomewide distribution of high-frequency, completely mismatching SNP haplotype pairs observed to be common across human populations. , 2003, American journal of human genetics.

[30]  Kun Zhang,et al.  HaploBlockFinder: Haplotype Block Analyses , 2003, Bioinform..

[31]  Paola Sebastiani,et al.  Minimal haplotype tagging , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  B. J. Carey,et al.  Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots , 2003, Nature Genetics.

[33]  Riitta Veijola,et al.  Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene. , 2003, Genome research.

[34]  Ron Shamir,et al.  Maximum likelihood resolution of multi-block genotypes , 2004, RECOMB.

[35]  Dan Geiger,et al.  High density linkage disequilibrium mapping using models of haplotype block variation , 2004, ISMB/ECCB.

[36]  Dan Geiger,et al.  Model-Based Inference of Haplotype Block Variation , 2004, J. Comput. Biol..

[37]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..