A new algorithm for the solution of a polynomial matrix Diophantine equation

The main contribution of this work is to provide a new algorithm for the general solution of a polynomial matrix Diophantine equation. The theory is implemented via illustrative examples.

[1]  A. Vardulakis Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , 1991 .

[2]  C. Desoer,et al.  The feedback interconnection of lumped linear time-invariant systems☆ , 1975 .

[3]  C. Desoer,et al.  Algebraic theory for robust stability of interconnected systems: Necessary and sufficient conditions , 1982, 1982 21st IEEE Conference on Decision and Control.

[4]  Michael Sebek,et al.  Polynomial design of stochastic tracking systems , 1982 .

[5]  Jacob Hammer,et al.  Fraction representations of non-linear systems: a simplified approach , 1987 .

[6]  Vladimír Kučera,et al.  Disturbance rejection: A polynomial approach , 1983 .

[7]  C. Desoer,et al.  Feedback system design: The fractional representation approach to analysis and synthesis , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[8]  Vladimír Kučera,et al.  Diophantine equations in control - A survey , 1993, Autom..

[9]  J. Hammer Stabilization of non-linear systems† , 1986 .

[10]  K. J. Hunt,et al.  The standard ℋ2-optimal control problem: a polynomial solution , 1992 .

[11]  Vladimír Kucera,et al.  Closed-loop stability of discrete linear single-variable systems , 1974, Kybernetika.

[12]  T. Kaczorek Two-Dimensional Linear Systems , 1985 .

[13]  M. Šebek n-D polynomial matrix equations , 1988 .

[14]  O. V. Anashkin,et al.  On Stabilization of Nonlinear Systems , 1996 .

[15]  Mathukumalli Vidyasagar,et al.  Control System Synthesis: A Factorization Approach, Part I , 2011, Control System Synthesis Part I.

[16]  V. Kučera Exact model matching, polynomial equation approach , 1981 .