Hydrogen production during stationary phase in purple photosynthetic bacteria

[1]  Y. Asada,et al.  Re-evaluation of hydrogen productivity from acetate by some photosynthetic bacteria , 2008 .

[2]  Michael Seibert,et al.  Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. , 2008, Journal of biotechnology.

[3]  E. Gilles,et al.  Modeling the electron transport chain of purple non-sulfur bacteria , 2008, Molecular systems biology.

[4]  F. Rey,et al.  Redirection of Metabolism for Biological Hydrogen Production , 2007, Applied and Environmental Microbiology.

[5]  Debabrata Das,et al.  The Prospect of Purple Non-Sulfur (PNS) Photosynthetic Bacteria for Hydrogen Production: The Present State of the Art , 2007 .

[6]  L. Scriven,et al.  Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. , 2007, Biotechnology progress.

[7]  Alvin W Nienow,et al.  The scale-up of microbial batch and fed-batch fermentation processes. , 2007, Advances in applied microbiology.

[8]  M. Chikindas,et al.  Quorum sensing: fact, fiction, and everything in between. , 2007, Advances in applied microbiology.

[9]  Matthew R Melnicki,et al.  Integrated biological hydrogen production , 2006 .

[10]  V. Helms,et al.  A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the Cytochrome bc1 complex. , 2006, Biophysical journal.

[11]  S. Finkel Long-term survival during stationary phase: evolution and the GASP phenotype , 2006, Nature Reviews Microbiology.

[12]  Olaf Kruse,et al.  Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[13]  M. Inui,et al.  Enhanced Hydrogen Production from Formic Acid by Formate Hydrogen Lyase-Overexpressing Escherichia coli Strains , 2005, Applied and Environmental Microbiology.

[14]  T. Nyström Bacterial senescence, programmed death, and premeditated sterility , 2005 .

[15]  J. Miyake,et al.  Biohydrogen III: Renewable Energy System by Biological Solar Energy Conversion , 2004 .

[16]  Lawrence Pitt,et al.  Biohydrogen production: prospects and limitations to practical application , 2004 .

[17]  Thomas Nyström,et al.  Stationary-phase physiology. , 2003, Annual review of microbiology.

[18]  N. Isaacs,et al.  Rings, Ellipses and Horseshoes: How Purple Bacteria Harvest Solar Energy , 2004, Photosynthesis Research.

[19]  A. McEwan,et al.  Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria , 2004, Antonie van Leeuwenhoek.

[20]  Harun Koku,et al.  Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001 , 2003 .

[21]  Lance C Seefeldt,et al.  Nitrogen Fixation: The Mechanism of the Mo-Dependent Nitrogenase , 2003, Critical reviews in biochemistry and molecular biology.

[22]  C. Hunter,et al.  Rhodospirillum rubrum Possesses a Variant of the bchP Gene, Encoding Geranylgeranyl-Bacteriopheophytin Reductase , 2002, Journal of bacteriology.

[23]  P. Fyfe,et al.  Reaction centres: the structure and evolution of biological solar power. , 2002, Trends in biochemical sciences.

[24]  K. Miki,et al.  Structural basis of bacterial photosynthetic reaction centers. , 2001, Journal of biochemistry.

[25]  J. Tramper,et al.  Acetate as a carbon source for hydrogen production by photosynthetic bacteria. , 2001, Journal of biotechnology.

[26]  松永 是,et al.  Biohydrogen II : an approach to environmentally acceptable technology , 2001 .

[27]  Maria J. Barbosa,et al.  Hydrogen production by photosynthetic bacteria : culture media, yields and efficiencies , 2001 .

[28]  Lemi Türker,et al.  Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001 , 2000 .

[29]  Xueqiao Liu,et al.  Global Adaptations Resulting from High Population Densities in Escherichia coli Cultures , 2000, Journal of bacteriology.

[30]  A. L. Koch Microbial Physiology and Ecology of Slow Growth , 1997, Microbiology and Molecular Biology Reviews.

[31]  Tabita Fr,et al.  A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation , 1996 .

[32]  Y. Asada,et al.  Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production , 1995 .

[33]  H. Michel,et al.  The Structures of Photosynthetic Reaction Centers from Purple Bacteria as Revealed by X-Ray Crystallography , 1995 .

[34]  P. Cullen,et al.  Regulation of Nitrogen Fixation Genes , 1995 .

[35]  Kevin M. Smith,et al.  Biosynthesis and Structures of the Bacteriochlorophylls , 1995 .

[36]  M. Madigan,et al.  Anoxygenic Photosynthetic Bacteria , 1995, Advances in Photosynthesis and Respiration.

[37]  G. Roberts,et al.  Artificial DNA-mediated genetic transformation of the photosynthetic nitrogen-fixing bacterium Rhodospirillum rubrum , 1991, Archives of Microbiology.

[38]  K. Sasikala,et al.  Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001 , 1991 .

[39]  J. Deisenhofer,et al.  High-resolution structures of photosynthetic reaction centers. , 1991, Annual review of biophysics and biophysical chemistry.

[40]  T. Egli,et al.  Dynamics of microbial growth and cell composition in batch culture. , 1990, FEMS microbiology reviews.

[41]  J Deisenhofer,et al.  Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. , 1989, The EMBO journal.

[42]  G. Florenzano,et al.  Hydrogen production by immobilized cells. III—Prolonged and stable H2 photoevolution by Rhodopseudomonas palustris in light-dark cycles , 1986 .

[43]  J. B. Taylor,et al.  The international energy agency cooperative programs on hydrogen: past achievements and future potential , 1985 .

[44]  F. B. Simpson,et al.  A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. , 1984, Science.

[45]  Tsuneo Yamane,et al.  Fed-batch techniques in microbial processes , 1984 .

[46]  J. Wall,et al.  Spontaneous Nif- mutants of Rhodopseudomonas capsulata. , 1984, Journal of bacteriology.

[47]  R. Bachofen,et al.  Hydrogen Production by the Photosynthetic Bacterium Rhodospirillum rubrum , 1979, Applied and environmental microbiology.

[48]  J. Breznak,et al.  Viability and Endogenous Substrates Used During Starvation Survival of Rhodospirillum rubrum , 1978, Journal of bacteriology.

[49]  W. R. Sistrom,et al.  The photosynthetic bacteria , 1978 .

[50]  K. Ormerod,et al.  Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. , 1961, Archives of biochemistry and biophysics.

[51]  G. Cohen-bazire,et al.  Kinetic studies of pigment synthesis by non-sulfur purple bacteria. , 1957, Journal of cellular and comparative physiology.

[52]  H. Gest,et al.  STUDIES ON THE METABOLISM OF PHOTOSYNTHETIC BACTERIA IV , 1949, Journal of bacteriology.

[53]  S. H. Hunter Organic Growth Essentials of the Aerobic Nonsulfur Photosynthetic Bacteria , 1946, Journal of bacteriology.