Prolonged exposure to acid and bile induces chromosome abnormalities that precede malignant transformation of benign Barrett’s epithelium

[1]  H. Aviv,et al.  Prolonged exposure to acid and bile induces chromosome abnormalities that precede malignant transformation of benign Barrett’s epithelium , 2012, Molecular Cytogenetics.

[2]  S. Spechler,et al.  Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-κB activation in benign Barrett's epithelial cells. , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[3]  D. Banerjee,et al.  Transformation of benign Barrett's epithelium by repeated acid and bile exposure over 65 weeks: A novel in vitro model , 2011, International journal of cancer.

[4]  Z. Zemanová,et al.  Cytogenetic manifestation of chromosome 11 duplication/amplification in acute myeloid leukemia. , 2010, Cancer genetics and cytogenetics.

[5]  C. Maley,et al.  New models of neoplastic progression in Barrett's oesophagus. , 2010, Biochemical Society transactions.

[6]  S. Spechler,et al.  In benign Barrett's epithelial cells, acid exposure generates reactive oxygen species that cause DNA double-strand breaks. , 2009, Cancer research.

[7]  Jean M. Davidson,et al.  Endoreplication: polyploidy with purpose. , 2009, Genes & development.

[8]  N. Bianchi Y chromosome structural and functional changes in human malignant diseases. , 2009, Mutation research.

[9]  Carissa A. Sanchez,et al.  Chromosomal Instability and Copy Number Alterations in Barrett's Esophagus and Esophageal Adenocarcinoma , 2009, Clinical Cancer Research.

[10]  R. Souza,et al.  Repeated exposure to acid and bile selectively induces colonic phenotype expression in a heterogeneous Barrett's epithelial cell line , 2008, Laboratory Investigation.

[11]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[12]  G. Sarosi,et al.  Characterization of telomerase-immortalized, non-neoplastic, human Barrett's cell line (BAR-T). , 2007, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[13]  R. Rothstein,et al.  More is not always better: the genetic constraints of polyploidy. , 2007, Trends in genetics : TIG.

[14]  W. Park,et al.  Somatic mutations of the β‐TrCP gene in gastric cancer , 2007 .

[15]  W. Park,et al.  Somatic mutations of the beta-TrCP gene in gastric cancer. , 2007, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[16]  U. Schüller,et al.  Elevated Expression of Wnt Antagonists Is a Common Event in Hepatoblastomas , 2005, Clinical Cancer Research.

[17]  B. Sipos,et al.  Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. , 2005, Cancer research.

[18]  Jinlan Pan,et al.  Y-chromosome loss in acute promyelocytic leukemia. , 2005, Cancer genetics and cytogenetics.

[19]  P. Meltzer,et al.  Epidermal growth factor receptor overexpression and trisomy 7 in a case of Barrett's esophagus , 1990, Digestive Diseases and Sciences.

[20]  Patricia L. Blount,et al.  The Combination of Genetic Instability and Clonal Expansion Predicts Progression to Esophageal Adenocarcinoma , 2004, Cancer Research.

[21]  S. Fuchs,et al.  Associations among β-TrCP, an E3 ubiquitin ligase receptor, β-catenin, and NF-κB in colorectal cancer , 2004 .

[22]  I. Radford Chromosomal rearrangement as the basis for human tumourigenesis , 2004, International journal of radiation biology.

[23]  W. Golusiński,et al.  Frequent chromosome Y loss in primary, second primary and metastatic squamous cell carcinomas of the head and neck region. , 2004, Cancer letters.

[24]  M. Valentine,et al.  Gains of chromosome 17q common in high-risk neuroblastomas do not involve the topoisomerase IIα gene: FISH and quantitative-PCR (Q-PCR) studies of six neuroblastoma cell lines , 2004 .

[25]  K. Chu,et al.  Cytogenetic and fluorescence in situ hybridization characterization of clonal chromosomal aberrations and CCND1 amplification in esophageal carcinomas. , 2004, Cancer genetics and cytogenetics.

[26]  S. Fuchs,et al.  Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer. , 2004, Journal of the National Cancer Institute.

[27]  D. Pellman,et al.  From polyploidy to aneuploidy, genome instability and cancer , 2004, Nature Reviews Molecular Cell Biology.

[28]  S. Jung,et al.  Expression and Purification of Enzymatically Active Forms of the Human Lysyl Oxidase-like Protein 4* , 2003, Journal of Biological Chemistry.

[29]  W. Morgan,et al.  Persistent oxidative stress in chromosomally unstable cells. , 2003, Cancer research.

[30]  U. Beier,et al.  Overexpression of a novel lysyl oxidase-like gene in human head and neck squamous cell carcinomas. , 2003, Anticancer research.

[31]  T. Slaga,et al.  Induction of Homologue of Slimb Ubiquitin Ligase Receptor by Mitogen Signaling* , 2002, The Journal of Biological Chemistry.

[32]  Kenneth Pienta,et al.  APC/CTNNB1 (β‐catenin) pathway alterations in human prostate cancers , 2002 .

[33]  P. Moayyedi,et al.  Esophageal adenocarcinoma arising from Barrett's metaplasia has regional variations in the west. , 2002, Gastroenterology.

[34]  P. Dhawan,et al.  Correction: A Novel NF-κB-inducing Kinase-MAPK Signaling Pathway Up-regulates NF-κB Activity in Melanoma Cells , 2001, The Journal of Biological Chemistry.

[35]  K. Pienta,et al.  APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. , 2002, Genes, chromosomes & cancer.

[36]  P. Dhawan,et al.  A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. , 2002, The Journal of biological chemistry.

[37]  Patricia L. Blount,et al.  Predictors of progression in Barrett's esophagus III: baseline flow cytometric variables , 2001, American Journal of Gastroenterology.

[38]  Carissa A. Sanchez,et al.  Predictors of progression in Barrett's esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression , 2001, American Journal of Gastroenterology.

[39]  R. Nicholson,et al.  EGFR and cancer prognosis. , 2001, European journal of cancer.

[40]  W. Hop,et al.  Genomic alterations in malignant transformation of Barrett's esophagus. , 2001, Cancer research.

[41]  N. Carpenter,et al.  Molecular cytogenetics , 2001, Seminars in pediatric neurology.

[42]  J R Siewert,et al.  Chromosomal imbalances in Barrett's adenocarcinoma and the metaplasia-dysplasia-carcinoma sequence. , 2000, The American journal of pathology.

[43]  Carissa A. Sanchez,et al.  Evolution of neoplastic cell lineages in Barrett oesophagus , 1999, Nature Genetics.

[44]  J. Tucker,et al.  Frequency of spontaneous chromosome aberrations in mice: effects of age. , 1999, Mutation research.

[45]  C. Hunt,et al.  Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. , 1998, Cancer research.

[46]  S. Mamaeva Karyotypic evolution of cells in culture: a new concept. , 1998, International review of cytology.

[47]  D. Wong,et al.  p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. , 1997, Cancer research.

[48]  Carissa A. Sanchez,et al.  Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett's esophagus. , 1996, Oncogene.

[49]  Carissa A. Sanchez,et al.  17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Carissa A. Sanchez,et al.  Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplification and microsatellite polymorphisms. , 1996, Oncogene.

[51]  E. Schuuring The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes--a review. , 1995, Gene.

[52]  W. Hop,et al.  Accumulation of genetic abnormalities during neoplastic progression in Barrett's esophagus. , 1995, Cancer research.

[53]  R. Goyal,et al.  Prevalence of metaplasia at the gastro-oesophageal junction , 1994, The Lancet.

[54]  P. Briand,et al.  In vitro karyotype evolution and cytogenetic instability in the non-tumorigenic human breast epithelial cell line HMT-3522. , 1994, Cancer genetics and cytogenetics.

[55]  Carissa A. Sanchez,et al.  p53 mutations in Barrett's adenocarcinoma and high-grade dysplasia. , 1994, Gastroenterology.

[56]  B. Johansson,et al.  Trisomy 7 in nonneoplastic cells , 1993, Genes, chromosomes & cancer.

[57]  P. Blount,et al.  Flow-cytometric and histological progression to malignancy in Barrett's esophagus: prospective endoscopic surveillance of a cohort. , 1992, Gastroenterology.

[58]  R. Chaganti,et al.  B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-κB p50 , 1991, Cell.

[59]  Y. Nakamura,et al.  Accumulation of genetic alterations and progression of primary breast cancer. , 1991, Cancer research.

[60]  R. Chaganti,et al.  B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-kappa B p50. , 1991, Cell.

[61]  W. Isaacs,et al.  Allelic loss of chromosomes 16q and 10q in human prostate cancer. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Sasaki,et al.  Acceleration of chromosome aberrations in senescence-accelerated strains of mice. , 1990, Mutation research.

[63]  P. Gruss,et al.  Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. , 1990, Development.

[64]  S. Hirohashi,et al.  Frequent Loss of Heterozygosity on Chromosomes 16 and 4 in Human Hepatocellular Carcinoma , 1990, Japanese journal of cancer research : Gann.

[65]  J. Trent,et al.  Chromosomal rearrangements in Barrett's esophagus. A premalignant lesion of esophageal adenocarcinoma. , 1989, Cancer genetics and cytogenetics.

[66]  B. Reid,et al.  Barrett's esophagus. Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. , 1987, Gastroenterology.

[67]  M. Seabright A rapid banding technique for human chromosomes. , 1971, Lancet.