Towards Data-Driven Operational Wildfire Spread Modeling: A Report of the NSF-Funded WIFIRE Workshop

The National Science Foundation via Award #1331615 as part of the Interdisciplinary Research in Hazards and Disasters (Hazards SEES) program.

[1]  R. Rothermel A Mathematical Model for Predicting Fire Spread in Wildland Fuels , 2017 .

[2]  Joe H. Scott,et al.  Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel?s Surface Fire Spread Model , 2015 .

[3]  T. Loboda,et al.  Santa Ana winds and predictors of wildfire progression in southern California. , 2014, International journal of wildland fire.

[4]  Charles W. McHugh,et al.  A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations , 2014 .

[5]  Jan Mandel,et al.  Overview of the 2013 FireFlux II grass fire field experiment , 2014 .

[6]  R. Kremens,et al.  An experimental approach to the evaluation of prescribed fire behavior , 2014 .

[7]  Arnaud Trouvé,et al.  Towards predictive data-driven simulations of wildfire spread - Part II: Ensemble Kalman Filter for the state estimation of a front-tracking simulator of wildfire spread , 2014 .

[8]  R. Ottmar Wildland fire emissions, carbon, and climate: Modeling fuel consumption , 2014 .

[9]  J. Filippi,et al.  Multi-scale Simulation of a Very Large Fire Incident. Computation From the Combustion to the Atmospheric Meso-scale , 2013 .

[10]  G. Achtemeier Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling , 2013 .

[11]  Tomàs Margalef,et al.  Dynamic Data-Driven Genetic Algorithm for forest fire spread prediction , 2012, J. Comput. Sci..

[12]  Tomàs Margalef,et al.  Evolutionary Optimisation Techniques to Estimate Input Parameters in Environmental Emergency Modelling , 2011, Computational Optimization and Applications in Engineering and Industry.

[13]  J. Mandel,et al.  Ignition from a Fire Perimeter in a WRF Wildland Fire Model , 2011, 1107.2675.

[14]  J. Mandel,et al.  Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011 , 2011, 1102.1343.

[15]  Xiaolin Hu,et al.  Analysis and Quantification of Data Assimilation based on Sequential Monte Carlo Methods for wildfire spread simulation , 2010, Int. J. Model. Simul. Sci. Comput..

[16]  A. Sullivan Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models , 2009 .

[17]  M. Rollins LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment , 2009 .

[18]  Daniel Cariolle,et al.  Coupled Atmosphere‐Wildland Fire Modelling , 2009 .

[19]  Xiaolin Hu,et al.  Towards applications of particle filters in wildfire spread simulation , 2008, 2008 Winter Simulation Conference.

[20]  Kevin G. Tolhurst,et al.  Phoenix: Development and Application of a Bushfire Risk Management Tool , 2008 .

[21]  Craig J. Johns,et al.  A two-stage ensemble Kalman filter for smooth data assimilation , 2008, Environmental and Ecological Statistics.

[22]  Minjeong Kim,et al.  Data assimilation for wildland fires , 2007, IEEE Control Systems.

[23]  Jonathan D. Beezley,et al.  A wildland fire model with data assimilation , 2007, Math. Comput. Simul..

[24]  Scott L. Goodrick,et al.  Observing the Dynamics of Wildland Grass Fires: FireFlux—A Field Validation Experiment , 2007 .

[25]  A. Sullivan,et al.  Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models , 2007, 0706.4128.

[26]  A. Sullivan A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models , 2007, 0706.3074.

[27]  Jonathan D. Beezley,et al.  Morphing ensemble Kalman filters , 2007, ArXiv.

[28]  W. Mell,et al.  A physics-based approach to modelling grassland fires , 2007 .

[29]  Miguel G. Cruz,et al.  Evaluating a model for predicting active crown fire rate of spread using wildfire observations , 2006 .

[30]  Tomàs Margalef,et al.  Improved Prediction Methods for Wildfires Using High Performance Computing: A Comparison , 2006, International Conference on Computational Science.

[31]  Y. Kaufman,et al.  Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release , 2005 .

[32]  Philip Cunningham,et al.  Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed , 2005 .

[33]  Mark A. Finney,et al.  The challenge of quantitative risk analysis for wildland fire , 2005 .

[34]  Tomàs Margalef,et al.  S2F2M - Statistical System for Forest Fire Management , 2005, International Conference on Computational Science.

[35]  Martin E. Alexander,et al.  Overview of the International Crown Fire Modelling Experiment (ICFME) , 2004 .

[36]  Dominique Morvan,et al.  Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation , 2004 .

[37]  Lucas S. Bair,et al.  Prescribed Fire and Public Support: Knowledge Gained, Attitudes Changed in Florida , 2001, Journal of Forestry.

[38]  Dominique Morvan,et al.  Modeling of fire spread through a forest fuel bed using a multiphase formulation , 2001 .

[39]  Dominique Morvan,et al.  Firespread through fuel beds: Modeling of wind-aided fires and induced hydrodynamics , 2000 .

[40]  Martin E. Alexander,et al.  Elliptical-fire perimeter- and area-intensity distributions , 1992 .

[41]  Ian R. Noble,et al.  McArthur's fire-danger meters expressed as equations , 1980 .

[42]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[43]  D. E. Hall,et al.  Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data , 2014 .

[44]  Helcio R. B. Orlande,et al.  Application of particle filters to regional-scale wildfire spread , 2014 .

[45]  Arnaud Trouvé,et al.  Towards predictive simulation of wildfire spread at regional scale using ensemble-based data assimilation to correct the fire front position , 2014 .

[46]  Didier Lucor,et al.  Interactive comment on “Towards predictive data-driven simulations of wildfire spread – Part I: Reduced-cost Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter estimation” , 2014 .

[47]  J. Filippi,et al.  Assessment of ForeFire/Meso-NH for wildland fire/atmosphere coupled simulation of the FireFlux experiment , 2013 .

[48]  Arnaud Trouvé,et al.  Regional-scale simulations of wildland fire spread informed by real-time flame front observations , 2013 .

[49]  Faith R. Kearns,et al.  Urban–wildland fires: how California and other regions of the US can learn from Australia , 2009 .

[50]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[51]  N. Cheney,et al.  The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in Grasslands , 1993 .

[52]  D. Ward,et al.  Smoke emissions from wildland fires , 1991 .