On the difference between consecutive primes

Update: This work reproduces an earlier result of Peck, which the author was initially unaware of. The method of the proof is essentially the same as the original work of Peck. There are no new results. We show that the sum of squares of differences between consecutive primes $\sum_{p_n\le x}(p_{n+1}-p_n)^2$ is bounded by $x^{5/4+{\epsilon}}$ for $x$ sufficiently large and any fixed ${\epsilon}>0$. The proof relies on utilising various mean-value estimates for Dirichlet polynomials.

[1]  Tchébichef,et al.  Mémoire sur les nombres premiers. , 1852 .

[2]  J. Hadamard Sur la distribution des zéros de la fonction $\zeta (s)$ et ses conséquences arithmétiques , 1896 .

[3]  A. E. Ingham Mean-Value Theorems in the Theory of the Riemann Zeta-Function , 1928 .

[4]  H. Heilbronn,et al.  Über den Primzahlsatz von Herrn Hoheisel , 1933 .

[5]  Harald Cramér,et al.  On the order of magnitude of the difference between consecutive prime numbers , 1936 .

[6]  A. E. Ingham On the difference between consecutive primes , 1937 .

[7]  R. Rankin The Difference between Consecutive Prime Numbers, III , 1938 .

[8]  The difference of consecutive primes , 1940 .

[9]  T. Tatuzawa On the Zeros of Dirichlet's L-Functions , 1950 .

[10]  Daniel Shanks,et al.  On maximal gaps between successive primes , 1964 .

[11]  N. F. Gjeddebæk On the difference between consecutive primes , 1966 .

[12]  Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ=1 , 1967 .

[13]  H. Montgomery Topics in Multiplicative Number Theory , 1971 .

[14]  M. N. Huxley On the difference between consecutive primes , 1971 .

[15]  S. Uchiyama On the difference between consecutive prime numbers , 1975 .

[16]  THE TWELFTH POWER MOMENT OF THE RIEMANN-FUNCTION , 1978 .

[17]  D. R. Heath-Brown The Differences between Consecutive Primes , 1978 .

[18]  The Differences between Consecutive Primes, II , 1979 .

[19]  D. R. Heath-Brown,et al.  On the difference between consecutive primes , 1979 .

[20]  Zero Density Estimates for the Riemann Zeta‐Function and Dirichlet L‐Functions , 1979 .

[21]  D. R. Heath-Brown Prime Numbers in Short Intervals and a Generalized Vaughan Identity , 1982, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[22]  ON ZEROS OF DIRICHLET'S L FUNCTIONS , 1986 .

[23]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[24]  D. R. Heath-Brown The number of primes in a short interval. , 1988 .

[25]  Andrew Granville,et al.  HARALD CRAM ER AND THE DISTRIBUTION OF PRIME NUMBERS , 1993 .

[26]  Gang Yu The Differences Between Consecutive Primes , 1996 .

[27]  Very Large Gaps between Consecutive Primes , 1997 .

[28]  J. Pintz,et al.  The Difference Between Consecutive Primes, II , 2001 .