A Simple Finite-Volume Method for Compressible Isothermal Two-Phase Flows Simulation

We present a simple method for simulating isothermal compressible two-phase flows with mass transfer. The convective part of the model is compatible with the Least Action Principle and the system is endowed with an entropy inequality which accounts for phase change terms and phasic pressure unbalance. A study of the system as a relaxed model of two equilibrium models is performed. This study allows the design of two-step relaxation-convection Finite-Volume discretization scheme which complies with the entropy balance of the model which drives the mass transfer phase-change process. Numerical results involving dynamical phase-change are presented.

[1]  Stéphane Jaouen,et al.  Etude mathematique et numerique de stabilite pour des modeles hydrodynamiques avec transition de phase , 2001 .

[2]  O. Metayer Modélisation et résolution de la propagation de fronts perméables. Application aux fronts d'évaporation et de détonation , 2003 .

[3]  Samuel Kokh,et al.  Phase Change Simulation for Isothermal Compressible Two-Phase Flows , 2005 .

[4]  Richard Saurel,et al.  Mathematical and numerical modeling of two-phase compressible flows with micro-inertia , 2002 .

[5]  Varada Charyulu,et al.  Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering , 1983 .

[6]  Lev Truskinovsky,et al.  Kinks versus Shocks , 1993 .

[7]  Rémi Abgrall,et al.  Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .

[8]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[9]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[10]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[11]  Philippe Helluy Simulation numérique des écoulements multiphasiques: de la théorie aux applications , 2005 .

[12]  Philippe Helluy,et al.  Finite volume simulation of cavitating flows , 2005 .

[13]  P. B. Whalley,et al.  Thermohydraulics of two-phase systems for industrial design and nuclear engineering , 1981 .

[14]  Grégoire Allaire,et al.  A five-equation model for the numerical simulation of interfaces in two-phase flows , 2000 .

[15]  Philippe Villedieu,et al.  A Compressible Model for Separated Two-Phase Flows Computations , 2002 .

[16]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[17]  Sergey Gavrilyuk,et al.  A new form of governing equations of fluids arising from Hamilton's principle , 1999, 0801.2333.

[18]  S. Passman,et al.  Hamilton's principle in continuum mechanics , 1985 .

[19]  Samuel Kokh,et al.  DINMOD: A diffuse interface model for two-phase flows modelling , 2005 .

[20]  Florian Caro,et al.  Modélisation et simulation numérique des transitions de phase liquide-vapeur , 2004 .

[21]  J. E. Dunn,et al.  Institute for Mathematics and Its Applicatiotrs , 2022 .

[22]  O. Lebaigue,et al.  The second gradient method for the direct numerical simulation of liquid—vapor flows with phase change , 2001 .

[23]  Frédéric Lagoutière,et al.  Modélisation mathématique et résolution numérique de problèmes de fluides à plusieurs constituants. , 2000 .