Information geometry and statistical manifold
暂无分享,去创建一个
[1] Bang-Yen Chen,et al. Geometry of submanifolds , 1973 .
[2] G. Jumarie. SCHRÖDINGER EQUATION FOR QUANTUM FRACTAL SPACE–TIME OF ORDER n VIA THE COMPLEX-VALUED FRACTIONAL BROWNIAN MOTION , 2001 .
[3] M. Murray,et al. Differential Geometry and Statistics , 1993 .
[4] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[5] Shun-ichi Amari,et al. Statistical inference under multiterminal rate restrictions: A differential geometric approach , 1989, IEEE Trans. Inf. Theory.
[6] M. E. Naschie,et al. Quantum loops, wild topology and fat Cantor sets in transfinite high-energy physics , 2002 .
[7] Shun-ichi Amari,et al. Differential geometry of a parametric family of invertible linear systems—Riemannian metric, dual affine connections, and divergence , 1987, Mathematical systems theory.
[8] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[9] M. E. Naschie,et al. Wild topology, hyperbolic geometry and fusion algebra of high energy particle physics , 2002 .
[10] H. Hasegawa. α-Divergence of the non-commutative information geometry , 1993 .
[11] G Ord,et al. Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .
[12] Shun-ichi Amari,et al. Differential-geometrical methods in statistics , 1985 .
[13] B. Frieden. Physics from Fisher information , 1998 .
[14] Laurent Nottale,et al. Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .
[15] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .