A Generalization of AT-Free Graphs and a Generic Algorithm for Solving Triangulation Problems

AbstractA subset A of the vertices of a graph G is an asteroidal set if for each vertex a ∈ A a connected component of G-N[a] exists containing A\backslash{a} . An asteroidal set of cardinality three is called asteriodal triple and graphs without an asteriodal triple are called AT-free . The maximum cardinality of an asteroidal set of G , denoted by \an(G) , is said to be the asteriodal number of G . We present a scheme for designing algorithms for triangulation problems on graphs. As a consequence, we obtain algorithms to compute graph parameters such as treewidth, minimum fill-in and vertex ranking number. The running time of these algorithms is a polynomial (of degree asteriodal number plus a small constant) in the number of vertices and the number of minimal separators of the input graph.

[1]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[2]  Anne Berry,et al.  Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..

[3]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[4]  Erich Prisner Representing triangulated graphs in stars , 1992 .

[5]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[6]  James R. Walter,et al.  Representations of chordal graphs as subtrees of a tree , 1978, J. Graph Theory.

[7]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[8]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[9]  Klaus Jansen,et al.  Rankings of Graphs , 1998, SIAM J. Discret. Math..

[10]  Dieter Kratsch,et al.  Independent Sets in Asteroidal Triple-Free Graphs , 1997, ICALP.

[11]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[12]  Jitender S. Deogun,et al.  On the Vertex Ranking Problem for Trapezoid, Circular-arc and Other Graphs , 1999, Discret. Appl. Math..

[13]  Chak-Kuen Wong,et al.  Vertex Ranking of Asteroidal Triple-Free Graphs , 1998, Inf. Process. Lett..

[14]  Hans L. Bodlaender,et al.  Kayles on Special Classes of Graphs - An Application of Sprague-Grundy Theory , 1992, WG.

[15]  G. Dirac On rigid circuit graphs , 1961 .

[16]  Jeremy P. Spinrad,et al.  On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..

[17]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..

[18]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[19]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[20]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1995, SIAM J. Discret. Math..

[21]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[22]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[23]  Dieter Kratsch,et al.  Asteroidal Sets in Graphs , 1997, WG.

[24]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[25]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[26]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.

[27]  Stephan Olariu,et al.  A Linear Time Algorithm to Compute a Dominating Path in an AT-Free Graph , 1995, Inf. Process. Lett..