Polarimetry and astrometry of NIR flares as event horizon scale, dynamical probes for the mass of Sgr A*

We present new astrometric and polarimetric observations of flares from Sgr A* obtained with GRAVITY, the near-infrared interferometer at ESO’s Very Large Telescope Interferometer (VLTI), bringing the total sample of well-covered astrometric flares to four and polarimetric flares to six. Of all flares, two are well covered in both domains. All astrometric flares show clockwise motion in the plane of the sky with a period of around an hour, and the polarization vector rotates by one full loop in the same time. Given the apparent similarities of the flares, we present a common fit, taking into account the absence of strong Doppler boosting peaks in the light curves and the EHT-measured geometry. Our results are consistent with and significantly strengthen our model from 2018. First, we find that the combination of polarization period and measured flare radius of around nine gravitational radii (9Rg ≈ 1.5RISCO, innermost stable circular orbit) is consistent with Keplerian orbital motion of hot spots in the innermost accretion zone. The mass inside the flares’ radius is consistent with the 4.297 × 106 M⊙ measured from stellar orbits at several thousand Rg. This finding and the diameter of the millimeter shadow of Sgr A* thus support a single black hole model. Second, the magnetic field configuration is predominantly poloidal (vertical), and the flares’ orbital plane has a moderate inclination with respect to the plane of the sky, as shown by the non-detection of Doppler-boosting and the fact that we observe one polarization loop per astrometric loop. Finally, both the position angle on the sky and the required magnetic field strength suggest that the accretion flow is fueled and controlled by the winds of the massive young stars of the clockwise stellar disk 1–5″ from Sgr A*, in agreement with recent simulations.

[1]  E. Quataert,et al.  Wind-Fed GRMHD Simulations of Sagittarius A*: Tilt and Alignment of Jets and Accretion Discs, Electron Thermodynamics, and Multi-Scale Modeling of the Rotation Measure , 2023, 2303.15503.

[2]  R. Narayan,et al.  Black holes up close , 2023, Nature.

[3]  T. Paumard,et al.  Magnetic reconnection plasmoid model for Sagittarius A* flares , 2023, Astronomy & Astrophysics.

[4]  M. Wardle,et al.  Polarized signatures of adiabatically expanding hotspots in Sgr A*’s accretion flow , 2023, Monthly notices of the Royal Astronomical Society.

[5]  F. Yuan,et al.  A ‘coronal-mass-ejection’ model for flares in sagittarius A* , 2023, Monthly notices of the Royal Astronomical Society.

[6]  G. Perrin,et al.  General relativistic effects and the near-infrared and X-ray variability of Sgr A* I , 2023, Astronomy & Astrophysics.

[7]  M. Mościbrodzka,et al.  Polarimetric signatures of hot spots in black hole accretion flows , 2022, Astronomy & Astrophysics.

[8]  I. Martí-Vidal,et al.  Orbital motion near Sagittarius A* , 2022, Astronomy & Astrophysics.

[9]  R. Genzel,et al.  The Young Stars in the Galactic Center , 2022, The Astrophysical Journal Letters.

[10]  G. Perrin,et al.  Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits , 2021, Astronomy & Astrophysics.

[11]  T. Ensslin,et al.  Deep images of the Galactic center with GRAVITY , 2021, Astronomy & Astrophysics.

[12]  G. Perrin,et al.  Constraining particle acceleration in Sgr A* with simultaneous GRAVITY, Spitzer, NuSTAR, and Chandra observations , 2021, Astronomy & Astrophysics.

[13]  Daniel C. M. Palumbo,et al.  The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole , 2021, The Astrophysical Journal.

[14]  M. Gurwell,et al.  Rapid Variability of Sgr A* across the Electromagnetic Spectrum , 2020, 2011.09582.

[15]  P. T. de Zeeuw,et al.  Detection of faint stars near Sagittarius A* with GRAVITY , 2020, Astronomy & Astrophysics.

[16]  P. T. de Zeeuw,et al.  Dynamically important magnetic fields near the event horizon of Sgr A* , 2020, Astronomy & Astrophysics.

[17]  R. Ruffini,et al.  Geodesic motion of S2 and G2 as a test of the fermionic dark matter nature of our Galactic core , 2020, Astronomy & Astrophysics.

[18]  A. Tchekhovskoy,et al.  Sgr A* near-infrared flares from reconnection events in a magnetically arrested disc , 2020, 2006.03657.

[19]  E. Quataert,et al.  Ab Initio Horizon-scale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds , 2020, The Astrophysical Journal.

[20]  T. Piran,et al.  The origin of hotspots around Sgr A*: orbital or pattern motion? , 2020, 2004.13029.

[21]  P. T. de Zeeuw,et al.  The flux distribution of Sgr A* , 2020, Astronomy & Astrophysics.

[22]  P. T. de Zeeuw,et al.  Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole , 2020, Astronomy & Astrophysics.

[23]  B. Ripperda,et al.  Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks , 2020, The Astrophysical Journal.

[24]  G. Perrin,et al.  Modeling the orbital motion of Sgr A*’s near-infrared flares , 2020, Astronomy & Astrophysics.

[25]  Caltech,et al.  Unprecedented variability of Sgr A* in NIR , 2019, 1908.01777.

[26]  Jessica R. Lu,et al.  Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole , 2019, Science.

[27]  P. T. de Zeeuw,et al.  Detection of a Drag Force in G2's Orbit: Measuring the Density of the Accretion Flow onto Sgr A* at 1000 Schwarzschild Radii , 2018, The Astrophysical Journal.

[28]  S. Rabien,et al.  Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.

[29]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[30]  G. Fazio,et al.  Variability Timescale and Spectral Index of Sgr A* in the Near Infrared: Approximate Bayesian Computation Analysis of the Variability of the Closest Supermassive Black Hole , 2018, The Astrophysical journal.

[31]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[32]  R. Terrier,et al.  A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission , 2017, 1703.03410.

[33]  Reinhard Genzel,et al.  An Update on Monitoring Stellar Orbits in the Galactic Center , 2016, 1611.09144.

[34]  P. Ho,et al.  Resolved magnetic-field structure and variability near the event horizon of Sagittarius A* , 2015, Science.

[35]  F. Zeiler,et al.  Multidisciplinary , 2015, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[36]  A. Eckart,et al.  Polarized light from Sagittarius A* in the near-infrared K_{s}-band , 2014, 1411.0006.

[37]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[38]  R. P. Eatough,et al.  A strong magnetic field around the supermassive black hole at the centre of the Galaxy , 2013, Nature.

[39]  R. Blandford,et al.  Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes , 2012, Science.

[40]  C. Gammie,et al.  A gas cloud on its way towards the supermassive black hole at the Galactic Centre , 2011, Nature.

[41]  R. Lenzen,et al.  The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT - Implications for time-resolved polarimetric measurements of Sgr A* , 2010, 1010.4708.

[42]  K. Mužić,et al.  Near infrared flares of Sagittarius A* - Importance of near infrared polarimetry , 2009, 0911.4659.

[43]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[44]  A. Eckart,et al.  UvA-DARE ( Digital Academic Repository ) Polarized NIR and X-ray flares from Sagittarius A * , 2008 .

[45]  Usa,et al.  A polarized infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots , 2006, astro-ph/0611737.

[46]  K. Mužić,et al.  Near-infrared polarimetry setting constraints on the orbiting spot model for Sgr A* flares , 2006, astro-ph/0610104.

[47]  S. Trippe,et al.  Polarimetry of near-infrared flares from Sagittarius A* , 2006, astro-ph/0610103.

[48]  G. Bower,et al.  Flaring Activity of Sagittarius A* at 43 and 22 GHz: Evidence for Expanding Hot Plasma , 2006, astro-ph/0603685.

[49]  T. Paumard,et al.  The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation , 2006, astro-ph/0601268.

[50]  Paul T. P. Ho,et al.  A size of ∼1 au for the radio source Sgr A* at the centre of the Milky Way , 2005, Nature.

[51]  Harvard University,et al.  Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths , 2005, astro-ph/0509237.

[52]  Avery E. Broderick,et al.  Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A* , 2005, astro-ph/0506433.

[53]  C.Dumas,et al.  SINFONI in the Galactic Center: young stars and IR flares in the central light month , 2005, astro-ph/0502129.

[54]  D. Rouan,et al.  Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.

[55]  D. Rouan,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[56]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[57]  Yuri Levin,et al.  Stellar Disk in the Galactic Center: A Remnant of a Dense Accretion Disk? , 2003, astro-ph/0303436.

[58]  Caltech,et al.  Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre , 2001, Nature.

[59]  Zhi-qiang Shen,et al.  Intrinsic Size of Sagittarius A*: 72 Schwarzschild Radii , 1998, astro-ph/9809222.

[60]  R. L. Brown,et al.  Intense sub-arcsecond structure in the galactic center , 1974 .

[61]  R. Joynt Department , 1960, Neurology.

[62]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way , 2023, 2311.08680.

[63]  Bundschuh,et al.  Department of Physics , 2005 .

[64]  European Southern Observatory, , 1999 .