Tracking Multiple People Online and in Real Time

We cast the problem of tracking several people as a graph partitioning problem that takes the form of an NP-hard binary integer program. We propose a tractable, approximate, online solution through the combination of a multi-stage cascade and a sliding temporal window. Our experiments demonstrate significant accuracy improvement over the state of the art and real-time post-detection performance.

[1]  Rui Caseiro,et al.  Globally optimal solution to multi-object tracking with merged measurements , 2011, 2011 International Conference on Computer Vision.

[2]  Konrad Schindler,et al.  Multi-target tracking by continuous energy minimization , 2011, CVPR 2011.

[3]  Ramakant Nevatia,et al.  An online learned CRF model for multi-target tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Alberto Del Bimbo,et al.  Posterity Logging of Face Imagery for Video Surveillance , 2012, IEEE MultiMedia.

[5]  Junjie Yan,et al.  Multiple Target Tracking Based on Undirected Hierarchical Relation Hypergraph , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Pascal Fua,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Multiple Object Tracking Using K-shortest Paths Optimization , 2022 .

[7]  Konrad Schindler,et al.  Discrete-continuous optimization for multi-target tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Ramakant Nevatia,et al.  Global data association for multi-object tracking using network flows , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Amir Globerson,et al.  Higher Order Matching for Consistent Multiple Target Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[10]  Mubarak Shah,et al.  Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views , 2008, Comput. Vis. Image Underst..

[11]  Afshin Dehghan,et al.  GMCP-Tracker: Global Multi-object Tracking Using Generalized Minimum Clique Graphs , 2012, ECCV.

[12]  Jinsong Tan,et al.  A note on the inapproximability of correlation clustering , 2007, Inf. Process. Lett..

[13]  Bodo Rosenhahn,et al.  Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[14]  Luc Van Gool,et al.  Coupled Detection and Trajectory Estimation for Multi-Object Tracking , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Pascal Fua,et al.  Tracking multiple people under global appearance constraints , 2011, 2011 International Conference on Computer Vision.

[16]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[17]  Chunxiao Liu,et al.  Person Re-identification: What Features Are Important? , 2012, ECCV Workshops.

[18]  Mubarak Shah,et al.  A noniterative greedy algorithm for multiframe point correspondence , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Robert T. Collins,et al.  Multi-target Tracking by Lagrangian Relaxation to Min-cost Network Flow , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Luc Van Gool,et al.  Robust tracking-by-detection using a detector confidence particle filter , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[21]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[22]  Robert T. Collins,et al.  Multiple Target Tracking Using Frame Triplets , 2012, ACCV.

[23]  Chaitanya Swamy,et al.  Correlation Clustering: maximizing agreements via semidefinite programming , 2004, SODA '04.

[24]  James J. Little,et al.  A Linear Programming Approach for Multiple Object Tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Shai Bagon,et al.  Large Scale Correlation Clustering Optimization , 2011, ArXiv.

[26]  Kuk-Jin Yoon,et al.  Robust Online Multi-object Tracking Based on Tracklet Confidence and Online Discriminative Appearance Learning , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[28]  Jesús Martínez del Rincón,et al.  Online multiperson tracking with occlusion reasoning and unsupervised track motion model , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[29]  Charless C. Fowlkes,et al.  Globally-optimal greedy algorithms for tracking a variable number of objects , 2011, CVPR 2011.

[30]  James Ferryman Proceedings (PETS 2009) , 2009 .

[31]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[32]  Mohamed R. Amer,et al.  Multiobject tracking as maximum weight independent set , 2011, CVPR 2011.

[33]  Mubarak Shah,et al.  (MP)2T: Multiple People Multiple Parts Tracker , 2012, ECCV.

[34]  Afshin Dehghan,et al.  Part-based multiple-person tracking with partial occlusion handling , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Anthony Wirth,et al.  Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[36]  Ian D. Reid,et al.  Stable multi-target tracking in real-time surveillance video , 2011, CVPR 2011.