A Generalized Quantifier Concept in Computational Complexity Theory

A notion of generalized quantifier in computational complexity theory is explored and used to give a unified treatment of leaf language definability, oracle separations, type 2 operators, and circuits with monoidal gates. Relations to Lindstrom quantifiers are pointed out.

[1]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[2]  Ulrich Hertrampf Acceptance by transformation monoids (with an application to local self reductions) , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.

[3]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[4]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[5]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[6]  Frank Stephan,et al.  On Existentially First-Order Definable Languages and Their Relation to NP , 1998, ICALP.

[7]  Johann A. Makowsky,et al.  Oracles and Quantifiers , 1993, CSL.

[8]  Pierluigi Crescenzi,et al.  A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..

[9]  U Hertrampf Regular Leaf Languages and (non-) Regular Tree Shapes , 1995 .

[10]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[11]  Helmut Veith,et al.  Succinct representation, leaf languages, and projection reductions , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[12]  L. Fortnow Counting complexity , 1998 .

[13]  Heribert Vollmer,et al.  Nondeterministic NC 1 Computation. , 1996 .

[14]  Ulrich Hertrampf Classes of Bounded Counting Type and their Inclusion Relations , 1995, STACS.

[15]  J. Tor,et al.  Complexity classesde ned by counting quanti ers * , 1991 .

[16]  J. Davenport Editor , 1960 .

[17]  Denis Thérien,et al.  Logspace and logtime leaf languages , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[18]  Riccardo Silvestri,et al.  The general notion of a dot-operator , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.

[19]  Heribert Vollmer,et al.  Gap-Languages and Log-Time Complexity Classes , 1997, Theor. Comput. Sci..

[20]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[21]  Elisa Bertino,et al.  On the Number of Descendants in an Object DAG , 1996, Inf. Process. Lett..

[22]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  David A. Mix Barrington Quasipolynomial size circuit classes , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[25]  N. Vereshchagin RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS IN THE POLYNOMIAL THEORY OF ALGORITHMS , 1994 .

[26]  Eric Allender A Note on Uniform Circuit Lower Bounds for the Counting Hierarchy (Extended Abstract) , 1996, COCOON.

[27]  Thomas Schwentick,et al.  On the power of polynomial time bit-reductions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[28]  Klaus W. Wagner,et al.  Some Observations on the Connection Between Counting an Recursion , 1986, Theor. Comput. Sci..

[29]  Heribert Vollmer,et al.  The Chain Method to Separate Counting Classes , 1998, Theory of Computing Systems.

[30]  N. Immerman,et al.  On uniformity within NC 1 . , 1988 .

[31]  Heribert Vollmer,et al.  On the power of number-theoretic operations with respect to counting , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[32]  Heribert Vollmer,et al.  Lindström Quantifiers and Leaf Language Definability , 1996, Int. J. Found. Comput. Sci..

[33]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[34]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[35]  Pierluigi Crescenzi,et al.  Introduction to the theory of complexity , 1994, Prentice Hall international series in computer science.

[36]  Liming Cai,et al.  On Input Read-Modes of Alternating Turing Machines , 1995, Theor. Comput. Sci..

[37]  Iain A. Stewart,et al.  Using the Hamiltonian Path Operator to Capture NP , 1990, J. Comput. Syst. Sci..

[38]  Jacobo Torán,et al.  Complexity classes defined by counting quantifiers , 1991, JACM.

[39]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[40]  Daniel A. Spielman,et al.  PP is closed under intersection , 1991, STOC '91.

[41]  Heribert Vollmer,et al.  Uniformly Defining Complexity Classes of Functions , 1998, STACS.

[42]  Jin-Yi Cai,et al.  PSPACE Survives Constant-Width Bottlenecks , 1991, Int. J. Found. Comput. Sci..

[43]  Bernd Borchert On the Acceptance Power of Regular Languages , 1994, STACS.

[44]  Hans-Jörg Burtschick Berechnungs- und Beschreibungskomplexität von Zählfunktionen und Lindströmquantoren , 1997 .

[45]  Markus Frick Oracles and Quantiiers , 1997 .

[46]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[47]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[48]  Jacobo Torr Complexity Classes Deened by Counting Quantiiers* , 2022 .

[49]  Heribert Vollmer,et al.  Nondeterministic NC1 Computation , 1998, J. Comput. Syst. Sci..

[50]  V. J. Rayward-Smith Introduction to the Theory of Complexity , 1995 .

[51]  Heribert Vollmer Relations Among Parallel and Sequential Computation Models , 1996, ASIAN.

[52]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[53]  A. Dawar FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .

[54]  Antoni Lozano,et al.  Succinct Circuit Representations and Leaf Language Classes are Basically the Same Concept , 1996, Inf. Process. Lett..

[55]  Iain A. Stewart,et al.  Comparing the Expressibility of Languages Formed using NP-Complete Operators , 1991, J. Log. Comput..

[56]  José L. Balcázar,et al.  The complexity of algorithmic problems on succinct instances , 1992 .

[57]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[58]  Georg Gottlob Relativized logspace and generalized quantifiers over finite structures , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[59]  Klaus W. Wagner,et al.  The Analytic Polynomial‐Time Hierarchy , 1998, Math. Log. Q..

[60]  Klaus-Jörn Lange Two Characterizations of the Logarithmic Alternation Hierarchy , 1986, MFCS.

[61]  Heribert Vollmer Relating Polynomial Time to Constant Depth , 1998, Theor. Comput. Sci..

[62]  Heribert Vollmer,et al.  Succinct Inputs, Lindstr om Quantifiers, and a General Complexity Theoretic Operator Concept , 1997 .

[63]  Heribert Vollmer,et al.  On Type-2 Probabilistic Quantifiers , 1996, ICALP.

[64]  Neil Immerman,et al.  Time, hardware, and uniformity , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[65]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[66]  Heribert Vollmer,et al.  On operators of higher types , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.

[67]  Johann A. Makowsky,et al.  Logics Capturing Relativized Complexity Classes Uniformly , 1994, LCC.

[68]  Neil Immerman,et al.  Expressibility and Parallel Complexity , 1989, SIAM J. Comput..

[69]  Perlindström First Order Predicate Logic with Generalized Quantifiers , 1966 .