A review of wireless-photonic systems: Design methodologies and topologies, constraints, challenges, and innovations in electronics and photonics

Abstract Photonic networks form the backbone for data communications. In particular, in current and future wireless communication systems, photonic networks are becoming increasingly popular for data distribution between the central office and the remote antenna units at base stations. As wireless-photonic systems become in increasing demand, low-cost implementation of such systems will be desirable. This paper describes how integrated photonics and electronics, on silicon, can be used to design such systems. Various building blocks of such silicon-photonics systems are reviewed. The emphasis is on a 60 GHz wireless system which could be suitable for the emerging 5th-generation (5G) cellular networks. The implementation discussed here uses digital baseband optical transmission as opposed to the radio-over-fibre approach.

[1]  Di Liang,et al.  Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate , 2008 .

[2]  Eun-Chul Park,et al.  Wideband VCO With Simultaneous Switching of Frequency Band, Active Core, and Varactor Size , 2007, IEEE Journal of Solid-State Circuits.

[3]  K. Bergman,et al.  Thermal stabilization of a microring modulator using feedback control. , 2012, Optics express.

[4]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[5]  S. Palermo,et al.  Compact Verilog-A modeling of silicon carrier-injection ring modulators , 2015, 2015 IEEE Optical Interconnects Conference (OI).

[6]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[7]  Hao Zhang,et al.  Capacity of 60 GHz Wireless Communication Systems over Fading Channels , 2012, J. Networks.

[8]  Tymon Barwicz,et al.  Low-Cost Interfacing of Fibers to Nanophotonic Waveguides: Design for Fabrication and Assembly Tolerances , 2014, IEEE Photonics Journal.

[9]  Jing Li,et al.  Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides , 2011 .

[11]  Howard C. Luong,et al.  Design Theory and Performance of 1-GHz CMOS Downconversion and Upconversion Mixers , 2000 .

[12]  Pierluigi Nuzzo,et al.  A 2-mm$^{2}$ 0.1–5 GHz Software-Defined Radio Receiver in 45-nm Digital CMOS , 2009, IEEE Journal of Solid-State Circuits.

[13]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[14]  Shahriar Mirabbasi,et al.  A wideband CMOS LNA design approach , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[15]  Alexander V. Rylyakov,et al.  Monolithic Silicon Integration of Scaled Photonic Switch Fabrics, CMOS Logic, and Device Driver Circuits , 2014, Journal of Lightwave Technology.

[16]  K. S. Yeo,et al.  A 1.2 V 2.4 GHz low spur CMOS PLL synthesizer with a gain boosted charge pump for a batteryless transceiver , 2012, 2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[17]  K. Yvind,et al.  Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide , 2010 .

[18]  Kresten Yvind,et al.  Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency. , 2014, Optics letters.

[19]  Zhiming Chen,et al.  W-Band Silicon-Based Frequency Synthesizers Using Injection-Locked and Harmonic Triplers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[20]  Sorin P. Voinigescu,et al.  Design of a Dual W- and D-Band PLL , 2011, IEEE Journal of Solid-State Circuits.

[21]  Dong Jie,et al.  Channel Capacity of 60 GHz Wireless Communication Systems over Indoor Line-of-Sight and Non-Line-of-Sight Channels , 2010, 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).

[22]  W. Hofmann,et al.  1.55-$\mu$ m VCSEL With Enhanced Modulation Bandwidth and Temperature Range , 2009, IEEE Photonics Technology Letters.

[23]  Ray T. Chen,et al.  Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics , 2012 .

[24]  Wei Shi,et al.  Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon. , 2013, Optics express.

[25]  P. Wolf,et al.  1550-nm High-Speed Short-Cavity VCSELs , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  L. Cerutti,et al.  GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1.55 $\mu$ m at Room Temperature , 2010, IEEE Photonics Technology Letters.

[27]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[28]  L. D. Tzeng,et al.  A 1.06 Gb/s -31 dBm to 0 dBm BiCMOS optical preamplifier featuring adaptive transimpedance , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[29]  Edgar Sanchez-Sinencio,et al.  CMOS transconductance multipliers: a tutorial , 1998 .

[30]  Ali M. Niknejad,et al.  Design considerations for 60 GHz CMOS radios , 2004, IEEE Communications Magazine.

[31]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[32]  Edgar Sánchez-Sinencio,et al.  A Wideband Millimeter-Wave Frequency Synthesis Architecture Using Multi-Order Harmonic-Synthesis and Variable $N$-Push Frequency Multiplication , 2011, IEEE Journal of Solid-State Circuits.

[33]  Nathan J. Gomes,et al.  Next Generation Wireless Communications Using Radio over Fiber , 2012 .

[34]  Joseph Shappir,et al.  Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. , 2011, Nano letters.

[35]  Jianping Yao,et al.  Microwave photonics , 2022, Science China Information Sciences.

[36]  Wei Shi,et al.  Silicon photonic grating-assisted, contra-directional couplers. , 2013, Optics express.

[37]  Gee-Kung Chang,et al.  1–100GHz microwave photonics link technologies for next-generation WiFi and 5G wireless communications , 2013, 2013 IEEE International Topical Meeting on Microwave Photonics (MWP).

[38]  B. Ben Bakir,et al.  Hybrid Si/III-V Fabry-Perot lasers based on adiabatic mode transformers , 2010, 7th IEEE International Conference on Group IV Photonics.

[39]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[40]  Ali M. Niknejad,et al.  A Robust 24mW 60GHz Receiver in 90nm Standard CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[41]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[42]  R Baets,et al.  Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. , 2006, Optics express.

[43]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[44]  M S J Steyaert,et al.  A 60-GHz CMOS VCO Using Capacitance-Splitting and Gate–Drain Impedance-Balancing Techniques , 2011, IEEE Transactions on Microwave Theory and Techniques.

[45]  Win Chaivipas,et al.  A Low Phase Noise Quadrature Injection Locked Frequency Synthesizer for MM-Wave Applications , 2011, IEEE Journal of Solid-State Circuits.

[46]  Joy Laskar,et al.  A 90nm CMOS 60GHz Radio , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[47]  Changhua Cao,et al.  Millimeter-Wave CMOS Voltage-Controlled Oscillators , 2007, 2007 IEEE Radio and Wireless Symposium.

[48]  I. Shubin,et al.  Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[49]  E. Alon,et al.  Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver. , 2011, Optics express.

[50]  Byung-Sung Kim,et al.  Post-linearization of cascode CMOS low noise amplifier using folded PMOS IMD sinker , 2006 .

[51]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[52]  Youngmin Kim,et al.  A 60 GHz Cascode Variable-Gain Low-Noise Amplifier With Phase Compensation in a 0.13 $\mu{\rm m}$ CMOS Technology , 2012, IEEE Microwave and Wireless Components Letters.

[53]  Assia Barkai,et al.  Integrated hybrid silicon triplexer. , 2010, Optics express.

[54]  Shahriar Mirabbasi,et al.  An ultra-low-voltage CMOS mixer using switched-transconductance, current-reuse and dynamic-threshold-voltage gain-boosting techniques , 2012, 10th IEEE International NEWCAS Conference.

[55]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[56]  L. Chirovsky,et al.  16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit , 2000, IEEE Photonics Technology Letters.

[57]  Shahriar Mirabbasi,et al.  A 4-stage 60-GHz low-noise amplifier in 65-nm CMOS with body biasing to control gain, linearity, and input matching , 2012 .

[58]  T. Baehr‐Jones,et al.  Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators , 2005, Journal of Lightwave Technology.

[59]  Ali M. Niknejad,et al.  A Highly Integrated 60GHz CMOS Front-End Receiver , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[60]  Ashok V. Krishnamoorthy,et al.  Ultralow-power high-performance Si photonic transmitter , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[61]  Michiel Steyaert,et al.  Low-Power, 10-Gbps 1.5-Vpp differential CMOS driver for a silicon electro-optic ring modulator , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[62]  D. Van Thourhout,et al.  Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[63]  Kwyro Lee,et al.  Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors , 2004, IEEE J. Solid State Circuits.

[64]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[65]  Stephen Y. Chou,et al.  Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings , 1996 .

[66]  A. H. M. van Roermund,et al.  Analysis and Design of a 60 GHz Wideband Voltage-Voltage Transformer Feedback LNA , 2012, IEEE Transactions on Microwave Theory and Techniques.

[67]  Hon Ki Tsang,et al.  Apodized focusing subwavelength grating couplers for suspended membrane waveguides , 2012 .

[68]  J. Marti,et al.  High-speed modulation of a compact silicon ring resonator , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[69]  Nicolas A. F. Jaeger,et al.  Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip , 2015, 2015 IEEE Optical Interconnects Conference (OI).

[70]  Jong-Won Yu,et al.  A 60 GHz Wideband Phased-Array LNA With Short-Stub Passive Vector Generator , 2010, IEEE Microwave and Wireless Components Letters.

[71]  Behzad Razavi Design of intergrated circuits for optical communications , 2002 .

[72]  M. Lipson,et al.  CMOS-compatible athermal silicon microring resonators. , 2009, Optics express.

[73]  W. S. Hobson,et al.  Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits , 1999, IEEE Photonics Technology Letters.

[74]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[75]  Shahriar Mirabbasi,et al.  An ultra-low-voltage ultra-low-power CMOS active mixer , 2013 .

[76]  Wei Shi,et al.  Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. , 2014, Optics express.

[77]  M. Amann,et al.  Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning. , 2011, Optics express.

[78]  T. Suzuki,et al.  A 90Gb/s 2:1 multiplexer IC in InP-based HEMT technology , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[79]  Huei Wang,et al.  Advances in Silicon Based Millimeter-Wave Monolithic Integrated Circuits , 2014, Micromachines.

[80]  T Pinguet,et al.  A Grating-Coupler-Enabled CMOS Photonics Platform , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[81]  Cary Gunn,et al.  CMOS Photonics for High-Speed Interconnects , 2006, IEEE Micro.

[82]  J. Cunningham,et al.  Thermally tunable silicon racetrack resonators with ultralow tuning power. , 2010, Optics express.

[83]  Chia-Chin Chong,et al.  An Overview of Multigigabit Wireless through Millimeter Wave Technology: Potentials and Technical Challenges , 2007, EURASIP J. Wirel. Commun. Netw..

[84]  Ali M. Niknejad,et al.  A W-Band Low-Noise PLL With a Fundamental VCO in SiGe for Millimeter-Wave Applications , 2014, IEEE Transactions on Microwave Theory and Techniques.

[85]  Dan Song,et al.  A Fully Integrated 4 $\times$ 10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13 $\mu{\hbox {m}}$ CMOS SOI Technology , 2006, IEEE Journal of Solid-State Circuits.

[86]  Lukas Chrostowski,et al.  High performance Vernier racetrack resonators. , 2012, Optics letters.

[87]  A. Knights,et al.  Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm , 2005 .

[88]  W. Bogaerts,et al.  Grating-Based Optical Fiber Interfaces for Silicon-on-Insulator Photonic Integrated Circuits , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[89]  R.A. Blauschild,et al.  A 4-terminal wide-band monolithic amplifier , 1981, IEEE Journal of Solid-State Circuits.

[90]  Kari Halonen,et al.  Integrated Amplifier Circuits for 60 GHz Broadband Telecommunication , 2004 .

[91]  Ling Liao,et al.  Silicon Optical Modulator for High-speed Applications , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[92]  Ranjit Gharpurey,et al.  A 57-to-75 GHz dual-mode wide-band reconfigurable oscillator in 65nm CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[93]  Nicolas A. F. Jaeger,et al.  Crosstalk in SOI Microring Resonator-Based Filters , 2016, Journal of Lightwave Technology.

[94]  Ashok V. Krishnamoorthy,et al.  High-efficiency 25Gb/s CMOS ring modulator with integrated thermal tuning , 2011, 8th IEEE International Conference on Group IV Photonics.

[95]  R.B. Staszewski,et al.  The First Fully Integrated Quad-Band GSM/GPRS Receiver in a 90-nm Digital CMOS Process , 2006, IEEE Journal of Solid-State Circuits.

[96]  G. Lo,et al.  A high-responsivity photodetector absent metal-germanium direct contact. , 2014, Optics express.

[97]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[98]  Da-Chiang Chang,et al.  A 0.6 V, 4.32 mW, 68 GHz Low Phase-Noise VCO With Intrinsic-Tuned Technique in 0.13 $\mu$m CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[99]  L. Chrostowski,et al.  Silicon Photonics Design: From Devices to Systems , 2015 .

[100]  Elia Palange,et al.  Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si , 1998 .

[101]  J. Buckwalter,et al.  A 25-Gb/s Monolithic Optical Transmitter With Micro-Ring Modulator in 130-nm SoI CMOS , 2013, IEEE Photonics Technology Letters.

[102]  Ashok V. Krishnamoorthy,et al.  Computer Systems Based on Silicon Photonic Interconnects A proposed supercomputer-on-a-chip with optical interconnections between processing elements will require development of new lower-energy optical components and new circuit architectures that match electrical datapaths to complementary optical , 2009 .

[103]  Shahriar Mirabbasi,et al.  A Class-C self-mixing-VCO architecture with high tuning-range and low phase-noise for mm-wave applications , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[104]  T. J. Sleboda,et al.  High Contrast 40gbit/s Optical Modulation in Silicon References and Links , 2022 .

[105]  Nan Guo,et al.  60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results , 2007, EURASIP J. Wirel. Commun. Netw..

[106]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[107]  Reza Molavi,et al.  A low‐power technique to boost the output amplitude of multi gigahertz push‐push LC VCOS , 2013 .

[108]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.