B(C6 F5 )3 /Amine-Catalyzed C(sp)-H Silylation of Terminal Alkynes with Hydrosilanes: Experimental and Theoretical Studies.

Transition metal catalyzed C-H functionalization of organic compounds has proved to be a useful atom-efficient strategy in organic synthesis. In contrast, main-group-element-based catalytic processes for C-H functionalization have remained underexplored to date. Reported herein is the catalytic C(sp)-H silylation of a wide range of terminal alkynes with hydrosilanes by using a combination of B(C6 F5 )3 and an organic base such as triethylenediamine (DABCO). This protocol constitutes the first example of boron-catalyzed C(sp)-H functionalization, offering a convenient route for the synthesis of a variety of alkynylsilanes. Experimental and computational studies have revealed that DABCO plays two crucial roles (Lewis base and Brønsted base) in this catalytic transformation.

[1]  S. Dutta,et al.  B(C6F5)3-catalyzed dehydrogenative cyclization of N-tosylhydrazones and anilines via a Lewis adduct: a combined experimental and computational investigation† †Electronic supplementary information (ESI) available. CCDC 1866759. For ESI and crystallographic data in CIF or other electronic format see D , 2019, Chemical science.

[2]  Z. Hou,et al.  Yttrium-Catalyzed Regioselective α-C–H Silylation of Methyl Sulfides with Hydrosilanes , 2018, ACS Catalysis.

[3]  Yuya Hu,et al.  B(C6F5)3-Catalyzed Regioselective Deuteration of Electron-Rich Aromatic and Heteroaromatic Compounds. , 2017, Organic letters.

[4]  Frédéric-Georges Fontaine,et al.  Metal-Free Borylation of Heteroarenes Using Ambiphilic Aminoboranes: On the Importance of Sterics in Frustrated Lewis Pair C-H Bond Activation. , 2017, Journal of the American Chemical Society.

[5]  G. Erker,et al.  Metal-Free Arene and Heteroarene Borylation Catalyzed by Strongly Electrophilic Bis-boranes. , 2017, Chemistry.

[6]  Z. Hou,et al.  B(C6F5)3-Catalyzed C-Si/Si-H Cross-Metathesis of Hydrosilanes. , 2017, Journal of the American Chemical Society.

[7]  Jianghua He,et al.  B(C6F5)3-Catalyzed (Convergent) Disproportionation Reaction of Indoles. , 2017, Journal of the American Chemical Society.

[8]  T. Werner,et al.  B(C6F5)3-Catalyzed Michael Reactions: Aromatic C-H as Nucleophiles. , 2017, Organic letters.

[9]  E. Nakamura,et al.  Iron-Catalyzed C-H Bond Activation. , 2017, Chemical reviews.

[10]  Martin Oestreich,et al.  Katalytische Friedel‐Crafts‐C‐H‐Borylierung elektronenreicher Arene: starke Reaktionsbeschleunigung durch Versetzen mit Alkenen , 2017 .

[11]  H. Klare,et al.  Catalytic Friedel-Crafts C-H Borylation of Electron-Rich Arenes: Dramatic Rate Acceleration by Added Alkenes. , 2017, Angewandte Chemie.

[12]  R. Grubbs,et al.  Alkali Metal-Hydroxide-Catalyzed C(sp)-H Bond silylation. , 2017, Journal of the American Chemical Society.

[13]  Sukbok Chang,et al.  Borane-Catalyzed Selective Hydrosilylation of Internal Ynamides Leading to β-Silyl (Z)-Enamides. , 2017, Organic letters.

[14]  D. Stephan The broadening reach of frustrated Lewis pair chemistry , 2016, Science.

[15]  Junliang Zhang,et al.  (C6 F5 )3 B Catalyzed Chemoselective and ortho-Selective Substitution of Phenols with α-Aryl α-Diazoesters. , 2016, Angewandte Chemie.

[16]  T. Repo,et al.  Atom-Efficient Synthesis of Alkynylfluoroborates Using BF3 -Based Frustrated Lewis Pairs. , 2016, Angewandte Chemie.

[17]  M. Oestreich,et al.  The Asymmetric Piers Hydrosilylation. , 2016, Journal of the American Chemical Society.

[18]  T. Repo,et al.  Metal-Free sp(2)-C-H Borylation as a Common Reactivity Pattern of Frustrated 2-Aminophenylboranes. , 2016, Journal of the American Chemical Society.

[19]  Baoli Wang,et al.  Boron-Catalyzed Aromatic C-H Bond Silylation with Hydrosilanes. , 2016, Journal of the American Chemical Society.

[20]  Martin Oestreich,et al.  Durch Nichtedelmetallsalze ausgelöste Friedel‐Crafts‐artige intermolekulare C‐H‐Silylierung von elektronenreichen Arenen , 2016 .

[21]  H. Klare,et al.  Friedel-Crafts-Type Intermolecular C-H Silylation of Electron-Rich Arenes Initiated by Base-Metal Salts. , 2016, Angewandte Chemie.

[22]  H. Du,et al.  Chiral Frustrated Lewis Pairs Catalyzed Highly Enantioselective Hydrosilylations of 1,2-Dicarbonyl Compounds. , 2016, Journal of the American Chemical Society.

[23]  J. Hartwig Evolution of C-H Bond Functionalization from Methane to Methodology. , 2016, Journal of the American Chemical Society.

[24]  M. Oestreich,et al.  Formal SiH4 chemistry using stable and easy-to-handle surrogates , 2015, Nature Chemistry.

[25]  Etienne Rochette,et al.  Metal-free catalytic C-H bond activation and borylation of heteroarenes , 2015, Science.

[26]  Z. Hou,et al.  Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation. , 2015, Accounts of chemical research.

[27]  G. Erker,et al.  Chemie frustrierter Lewis‐Paare: Entwicklung und Perspektiven , 2015 .

[28]  G. Erker,et al.  Frustrated Lewis pair chemistry: development and perspectives. , 2015, Angewandte Chemie.

[29]  M. Oestreich,et al.  A unified survey of Si-H and H-H bond activation catalysed by electron-deficient boranes. , 2015, Chemical Society reviews.

[30]  D. Stephan Frustrated Lewis pairs: from concept to catalysis. , 2015, Accounts of chemical research.

[31]  D. Stephan Frustrated Lewis Pairs. , 2015, Journal of the American Chemical Society.

[32]  Kenichiro Itami,et al.  Synthese von Materialien mit erweitertem π‐System durch C‐H‐Aktivierung , 2015 .

[33]  Fritz E. Kühn,et al.  C-H-Aktivierung mit Komplexen der f-Block-Elemente , 2015 .

[34]  K. Itami,et al.  Synthesis of extended π-systems through C-H activation. , 2015, Angewandte Chemie.

[35]  P. Arnold,et al.  C-H bond activation by f-block complexes. , 2015, Angewandte Chemie.

[36]  Sung-Woo Park,et al.  Boron-catalyzed silylative reduction of quinolines: selective sp3 C-Si bond formation. , 2014, Journal of the American Chemical Society.

[37]  W. Piers,et al.  Direct observation of a borane-silane complex involved in frustrated Lewis-pair-mediated hydrosilylations. , 2014, Nature chemistry.

[38]  M. Ingleson,et al.  E-H (E = R3Si or H) bond activation by B(C6F5)3 and heteroarenes; competitive dehydrosilylation, hydrosilylation and hydrogenation. , 2014, Chemical communications.

[39]  H. Fujimoto,et al.  Quantum chemical study of B(C6F5)3-catalyzed hydrosilylation of carbonyl group. , 2013, The Journal of organic chemistry.

[40]  N. Mizuno,et al.  Heterogeneously catalyzed aerobic cross-dehydrogenative coupling of terminal alkynes and monohydrosilanes by gold supported on OMS-2. , 2013, Angewandte Chemie.

[41]  Frank Glorius,et al.  C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. , 2013, Nature chemistry.

[42]  Kevin R. D. Johnson,et al.  Cyclometalative C-H bond activation in rare earth and actinide metal complexes. , 2013, Chemical Society reviews.

[43]  Zhenxia Chen,et al.  Frustrated Lewis pair induced boroauration of terminal alkynes. , 2012, Angewandte Chemie.

[44]  T. Tsuchimoto,et al.  Dehydrogenative Silylation of Terminal Alkynes with Hydrosilanes under Zinc–Pyridine Catalysis , 2012 .

[45]  C. Bruneau,et al.  Ruthenium(II)-catalyzed C-H bond activation and functionalization. , 2012, Chemical reviews.

[46]  R. Fröhlich,et al.  Frustrated Lewis Pair Behavior of Intermolecular Amine/B(C6F5)3 Pairs , 2012 .

[47]  Zhenxia Chen,et al.  Frustrated Lewis pair induced boroauration of terminal alkynes. , 2012, Angewandte Chemie.

[48]  W. Piers,et al.  Mechanistic aspects of bond activation with perfluoroarylboranes. , 2011, Inorganic chemistry.

[49]  J. Waser,et al.  Benziodoxole-based hypervalent iodine reagents for atom-transfer reactions. , 2011, Chemical communications.

[50]  K. Mikami,et al.  Highly enantioselective alkynylation of trifluoropyruvate with alkynylsilanes catalyzed by the BINAP-Pd complex: access to α-trifluoromethyl-substituted tertiary alcohols. , 2010, Organic letters.

[51]  D. Werz,et al.  Alkynes between main group elements: from dumbbells via rods to squares and tubes. , 2010, Chemical reviews.

[52]  N. Uchida,et al.  A single-step synthesis of enynes: Pd-catalyzed arylalkynylation of aryl iodides, internal alkynes, and alkynylsilanes. , 2010, Organic letters.

[53]  J. Ellman,et al.  Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. , 2010, Chemical reviews.

[54]  Melanie S Sanford,et al.  Palladium-catalyzed ligand-directed C-H functionalization reactions. , 2010, Chemical reviews.

[55]  O. Blacque,et al.  Activation of Terminal Alkynes by Frustrated Lewis Pairs , 2010 .

[56]  S. Yamaguchi,et al.  Ladder pi-conjugated materials containing main-group elements. , 2009, Chemistry, an Asian journal.

[57]  D. Stephan,et al.  Terminal alkyne activation by frustrated and classical Lewis acid/phosphine pairs. , 2009, Journal of the American Chemical Society.

[58]  Martin Oestreich,et al.  Schlüssiger Nachweis eines SN2‐Si‐Mechanismus in der B(C6F5)3‐ katalysierten Hydrosilylierung von Carbonylverbindungen: Einsichten in die verwandte Hydrierung , 2008 .

[59]  M. Oestreich,et al.  Conclusive evidence for an S(N)2-Si mechanism in the B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation. , 2008, Angewandte Chemie.

[60]  Rik R. Tykwinski,et al.  Synthese von Polyin‐Naturstoffen , 2006 .

[61]  R. Tykwinski,et al.  Synthesis of naturally occurring polyynes. , 2006, Angewandte Chemie.

[62]  B. Trost,et al.  Regioselectivity control in a ruthenium-catalyzed cycloisomerization of diyne-ols. , 2004, Organic letters.

[63]  Piers,et al.  Studies on the mechanism of B(C(6)F(5))(3)-catalyzed hydrosilation of carbonyl functions , 2000, The Journal of organic chemistry.

[64]  R. Shimizu,et al.  Dehydrogenative silylation of terminal alkynes by iridium catalyst , 2000 .

[65]  M. Itoh,et al.  Dehydrogenative Coupling between Hydrosilanes and Alkynes Catalyzed by Alkoxides, Alkylmetals, and Metalamides , 1999 .

[66]  T. Baba,et al.  New Si-C bond forming reactions over solid-base catalysts , 1998 .

[67]  Junichi Ishikawa,et al.  Dehydrogenative cross-coupling reactions between phenylsilane and ethynylbenzene in the presence of metal hydrides , 1998 .

[68]  W. Piers,et al.  Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters , 1996 .

[69]  D. Schinzer,et al.  Uses of Silicon-Containing Compounds in the Synthesis of Natural Products , 1995 .

[70]  K. Iwata,et al.  Dehydrogenative coupling reactions between hydrosilanes and monosubstituted alkynes catalyzed by solid bases , 1994 .

[71]  M. Voronkov,et al.  Dehydrocondensation of trialkylsilanes with acetylene and monosubstituted acetylenes , 1984 .