On Abelian Longest Common Factor with and without RLE

We consider the Abelian longest common factor problem in two scenarios: when input strings are uncompressed and are of size $n$, and when the input strings are run-length encoded and their compressed representations have size at most $m$. The alphabet size is denoted by $\sigma$. For the uncompressed problem, we show an $o(n^2)$-time and $\Oh(n)$-space algorithm in the case of $\sigma=\Oh(1)$, making a non-trivial use of tabulation. For the RLE-compressed problem, we show two algorithms: one working in $\Oh(m^2\sigma^2 \log^3 m)$ time and $\Oh(m (\sigma^2+\log^2 m))$ space, which employs line sweep, and one that works in $\Oh(m^3)$ time and $\Oh(m)$ space that applies in a careful way a sliding-window-based approach. The latter improves upon the previously known $\Oh(nm^2)$-time and $\Oh(m^4)$-time algorithms that were recently developed by Sugimoto et al.\ (IWOCA 2017) and Grabowski (SPIRE 2017), respectively.

[1]  Gad M. Landau,et al.  Algorithms for Jumbled Indexing, Jumbled Border and Jumbled Square on run-length encoded strings , 2016, Theor. Comput. Sci..

[2]  Gad M. Landau,et al.  Binary Jumbled Pattern Matching via All-Pairs Shortest Paths , 2014, ArXiv.

[3]  Simon J. Puglisi,et al.  Longest Common Abelian Factors and Large Alphabets , 2016, SPIRE.

[4]  Costas S. Iliopoulos,et al.  Algorithms for Longest Common Abelian Factors , 2016, Int. J. Found. Comput. Sci..

[5]  Mohammad Sohel Rahman,et al.  Indexing permutations for binary strings , 2010, Inf. Process. Lett..

[6]  Rezaul Alam Chowdhury,et al.  Equivalence Between Priority Queues and Sorting , 2008, Encyclopedia of Algorithms.

[7]  Zsuzsanna Lipták,et al.  Binary jumbled string matching for highly run-length compressible texts , 2013, Inf. Process. Lett..

[8]  Haim Kaplan,et al.  An Optimal Dynamic Data Structure for Stabbing-Semigroup Queries , 2012, SIAM J. Comput..

[9]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[10]  Gad M. Landau,et al.  Algorithms for Jumbled Indexing, Jumbled Border and Jumbled Square on Run-Length Encoded Strings , 2014, SPIRE.

[11]  Yijie Han,et al.  Deterministic sorting in O(nloglogn) time and linear space , 2004, J. Algorithms.

[12]  Hideo Bannai,et al.  Computing Abelian regularities on RLE strings , 2017, ArXiv.

[13]  Mohammad Sohel Rahman,et al.  Sub-quadratic time and linear space data structures for permutation matching in binary strings , 2012, J. Discrete Algorithms.

[14]  Zsuzsanna Lipták,et al.  Algorithms for Jumbled Pattern Matching in Strings , 2011, Int. J. Found. Comput. Sci..

[15]  Zsuzsanna Lipták,et al.  On Table Arrangements, Scrabble Freaks, and Jumbled Pattern Matching , 2010, FUN.

[16]  Wojciech Rytter,et al.  Efficient Indexes for Jumbled Pattern Matching with Constant-Sized Alphabet , 2013, ESA.

[17]  Jakub Radoszewski,et al.  Subquadratic-Time Algorithms for Abelian Stringology Problems , 2015, MACIS.

[18]  M. Thorup,et al.  Integer Sorting in Expected Time and Linear Space , 2002 .

[19]  Szymon Grabowski Regular Abelian Periods and Longest Common Abelian Factors on Run-Length Encoded Strings , 2017, SPIRE.

[20]  HanYijie Deterministic sorting in O(nlog logn) time and linear space , 2004 .

[21]  Simone Dantas,et al.  Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings , 2017, CPM.

[22]  Zsuzsanna Lipták,et al.  Searching for Jumbled Patterns in Strings , 2009, Stringology.

[23]  Moshe Lewenstein,et al.  Clustered Integer 3SUM via Additive Combinatorics , 2015, STOC.

[24]  Szymon Grabowski,et al.  New algorithms for binary jumbled pattern matching , 2013, Inf. Process. Lett..

[25]  Timothy M. Chan,et al.  Necklaces, Convolutions, and X+Y , 2006, Algorithmica.

[26]  Jon Louis Bentley,et al.  Decomposable Searching Problems , 1979, Inf. Process. Lett..