Association of a Locus in the CAMTA 1 GeneWith Survival in PatientsWith Sporadic Amyotrophic Lateral Sclerosis
暂无分享,去创建一个
Adriano Chiò | Philip Van Damme | Aleksey Shatunov | Bryan J. Traynor | Daniel Stahl | Lucia Corrado | Vincent Meininger | Jan H. Veldink | Christopher E. Shaw | Wim Robberecht | Jonathan D. Glass | Ammar Al-Chalabi | Giacomo P. Comi | Orla Hardiman | Cristina Cereda | Wouter van Rheenen | William Sproviero | Nicola Ticozzi | Peter M. Andersen | Vincenzo Silani | Pamela J. Shaw | G. Comi | C. Lewis | S. Newhouse | Robert H. Brown | J. Powell | P. Proitsi | A. Al-Chalabi | C. Shaw | P. Andersen | A. Chiò | F. Diekstra | J. Glass | O. Hardiman | Ashley Jones | J. Landers | R. McLaughlin | V. Meininger | J. Melki | W. Robberecht | A. Shatunov | S. Topp | B. Traynor | J. Veldink | D. Ståhl | P. Leigh | B. Castellotti | C. Gellera | Kuang Lin | K. Morrison | G. Soraru' | P. Shaw | J. Rooney | W. V. Rheenen | M. V. Es | P. Damme | N. Ticozzi | C. Tiloca | A. Ratti | V. Silani | R. Dobson | L. Mazzini | S. D'alfonso | L. Corrado | I. Fogh | W. Sproviero | John Powell | James Rooney | Simon Topp | P. Nigel Leigh | Cinzia Gellera | Petroula Proitsi | L. V. D. Berg | Judith Melki | Sandra D’Alfonso | John E. Landers | Richard Dobson | Gianni Sorarù | Barbara Castellotti | Karen E. Morrison | Roberto Del Bo | Ashley Jones | Isabella Fogh | Kuang Lin | Cinzia Tiloca | Frank P. Diekstra | Antonia Ratti | Michael A. van Es | Russell Lewis McLaughlin | Steven Newhouse | Bradley N. Smith | Letizia Mazzini | CathrynM. Lewis | Leonard H. van den Berg | R. Bo | Cristina Cereda | L. Berg | Richard J. B. Dobson | M. A. Es | P. Shaw | Robert H. Brown | C. Lewis
[1] Ewout J. N. Groen,et al. Analysis of the KIFAP3 gene in amyotrophic lateral sclerosis: a multicenter survival study , 2014, Neurobiology of Aging.
[2] Claire L. Simpson,et al. Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis , 2009, Proceedings of the National Academy of Sciences.
[3] C. Lewis,et al. Modelling the Effects of Penetrance and Family Size on Rates of Sporadic and Familial Disease , 2011, Human Heredity.
[4] M. Swash,et al. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.
[5] R. Ophoff,et al. ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study , 2007, The Lancet Neurology.
[6] John Q. Trojanowski,et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.
[7] Brittany N. Lasseigne,et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.
[8] T. Hortobágyi,et al. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.
[9] E. Beghi,et al. Long‐term survival in amyotrophic lateral sclerosis: A population‐based study , 2014, Annals of neurology.
[10] O. Delaneau,et al. A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.
[11] J. Marchini,et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.
[12] Andreas Buchmann,et al. Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. , 2007, Human molecular genetics.
[13] A. Farmer,et al. Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study , 2010, The Lancet Neurology.
[14] Christopher Kennard,et al. Eye-tracking in amyotrophic lateral sclerosis: A longitudinal study of saccadic and cognitive tasks , 2016, Amyotrophic lateral sclerosis & frontotemporal degeneration.
[15] O. Delaneau,et al. Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .
[16] Janel O. Johnson,et al. Kinesin-associated protein 3 (KIFAP3) has no effect on survival in a population-based cohort of ALS patients , 2010, Proceedings of the National Academy of Sciences.
[17] D. Reich,et al. Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.
[18] W. Robberecht,et al. The phenotypic variability of amyotrophic lateral sclerosis , 2014, Nature Reviews Neurology.
[19] L. Gallagher,et al. Intragenic CAMTA1 rearrangements cause non-progressive congenital ataxia with or without intellectual disability , 2012, Journal of Medical Genetics.
[20] A. Goris,et al. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans , 2012, Nature Medicine.
[21] J. Shimony,et al. Intragenic CAMTA1 deletions are associated with a spectrum of neurobehavioral phenotypes , 2015, Clinical genetics.
[22] A. Al-Chalabi,et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.
[23] R John Leigh,et al. Eye movements in amyotrophic lateral sclerosis and its mimics: a review with illustrative cases , 2010, Journal of Neurology, Neurosurgery & Psychiatry.
[24] A. Al-Chalabi,et al. Natural history and clinical features of the flail arm and flail leg ALS variants , 2009, Neurology.
[25] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[26] Manuel A. R. Ferreira,et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.
[27] Frank Baas,et al. Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis , 2008, Nature Genetics.
[28] R S Howard,et al. Management of motor neurone disease , 2002, Postgraduate medical journal.
[29] P. Donnelly,et al. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.
[30] A. Al-Chalabi,et al. Early symptom progression rate is related to ALS outcome: a prospective population-based study. , 2002, Neurology.
[31] A. Al-Chalabi,et al. Prolonged survival in motor neuron disease: a descriptive study of the King’s database 1990–2002 , 2003, Journal of neurology, neurosurgery, and psychiatry.
[32] P. Andersen,et al. UNC13A is a modifier of survival in amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.
[33] O. Hardiman,et al. Effect of a multidisciplinary amyotrophic lateral sclerosis (ALS) clinic on ALS survival: a population based study, 1996–2000 , 2003, Journal of neurology, neurosurgery, and psychiatry.
[34] Chad E. Grueter,et al. Ataxia and Purkinje cell degeneration in mice lacking the CAMTA1 transcription factor , 2014, Proceedings of the National Academy of Sciences.
[35] Ewout J N Groen,et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.
[36] Yurii S. Aulchenko,et al. ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.
[37] David Heckerman,et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.
[38] Bruce L. Miller,et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.
[39] Sonja W. Scholz,et al. A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. , 2009, Human molecular genetics.