Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene.

Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene.

[1]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[2]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[3]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[4]  Xianfan Xu,et al.  Supplementary Material for Phosphorene : A Unexplored 2 D Semiconductor with a High Hole Mobility , 2014 .

[5]  Li Yang,et al.  Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. , 2014, Nano letters.

[6]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[7]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[8]  S. Sugai,et al.  Raman and infrared reflection spectroscopy in black phosphorus , 1985 .

[9]  Jie Shan,et al.  Ultrafast photoluminescence from graphene. , 2010, Physical review letters.

[10]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[11]  Li Yang,et al.  Strain-Engineering Anisotropic Electrical Conductance of Phosphorene , 2014 .

[12]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[13]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[14]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[15]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[16]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[17]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[18]  Pablo Jarillo-Herrero,et al.  STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride , 2011, 1102.2642.

[19]  T. Heine,et al.  Stacking in bulk and bilayer hexagonal boron nitride. , 2013, Physical review letters.

[20]  Satyaprakash Sahoo,et al.  Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2 , 2013 .

[21]  Zhixian Zhou,et al.  Polarized photocurrent response in black phosphorus field-effect transistors. , 2014, Nanoscale.

[22]  P. Ajayan,et al.  Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets , 2014, Nature Communications.

[23]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[24]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[25]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[26]  Pablo Jarillo-Herrero,et al.  Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. , 2011, Nature materials.

[27]  Xiaobo Yin,et al.  Edge Nonlinear Optics on a MoS2 Atomic Monolayer , 2014, Science.

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[29]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[30]  Qun Wei,et al.  Superior mechanical flexibility of phosphorene and few-layer black phosphorus , 2014, 1403.7882.

[31]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[32]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[33]  W. Dumke Spontaneous Radiative Recombination in Semiconductors , 1957 .

[34]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[35]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[36]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[37]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[38]  J. Ferraro,et al.  Pressure Dependence of Infrared Eigenfrequencies of KCl and KBr , 1968 .

[39]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[40]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.