A finite-difference method for numerical solution of the steady-state nernst—planck equations with non-zero convection and electric current density

Abstract A computer algorithm has been developed for digital simulation of ionic transport through membranes obeying the Nernst—Planck and Poisson equations. The method of computation is quite general and allows the treatment of steady-state electrodiffusion equations for multiionic environments, the ionic species having arbitrary valences and mobilities, when convection and electric current are involved. The procedure provides a great flexibility in the choice of suitable boundary conditions and avoids numerical instabilities which are so frequent in numerical methods. Numerical results for concentration and electric potential gradient profiles are presented in the particular case of the ternary system NaClHClH2O.

[1]  M. S. Seshadri Current-Voltage Relationship for a Fixed Charge Membrane , 1983 .

[2]  A. Macgillivray,et al.  Applicability of Goldman's constant field assumption to biological systems. , 1969, Journal of theoretical biology.

[3]  K. Kontturi,et al.  Separation of Ions Using Countercurrent Electrolysis in a Thin, Porous Membrane , 1982 .

[4]  S. Liukkonen,et al.  Diffusion and electric conduction in multicomponent electrolyte systems , 1978 .

[5]  W. Nernst,et al.  Die elektromotorische Wirksamkeit der Jonen , 1889 .

[6]  Richard P. Buck,et al.  Electroanalytical Chemistry of Membranes , 1975 .

[7]  K. Kontturi,et al.  Experimental Verification of Separation of Ions Using Countercurrent Electrolysis in a Thin, Porous Membrane , 1983 .

[8]  M. Planck,et al.  Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .

[9]  A. Ekman Transport of ions in a porous membrane in the case of a ternary electrolyte system with simultaneous convection and electric current , 1982 .

[10]  Richard P. Buck,et al.  Numerical solution of the Nernst-Planck and poisson equation system with applications to membrane electrochemistry and solid state physics , 1978 .

[11]  R. French Finite Difference Methods for the Numerical Solution of the Nernst-Planck-Poisson Equations , 1974 .

[12]  R. Schlögl,et al.  Membrane permeation in systems far from equilibrium , 1966 .

[13]  M. Planck,et al.  Ueber die Potentialdifferenz zwischen zwei verdünnten Lösungen binärer Electrolyte , 1890 .

[14]  A. Macgillivray,et al.  Nernst‐Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions , 1968 .

[15]  Donald G. Miller Application of irreversible thermodynamics to electiolyte solutions. II. Ionic coefficients for isothermal vector transport processes in ternary systems , 1967 .

[16]  J. Garrido,et al.  Generalization of a finite-difference numerical method for the steady-state and transient solutions of the nernst—planck flux equations , 1985 .

[17]  Walther Nernst Zur Kinetik der in Lösung befindlichen Körper , 1888 .

[18]  Donald G. Miller Application of Irreversible Thermodynamics to Electrolyte Solutions. I. Determination of Ionic Transport Coefficients lij for Isothermal Vector Transport Processes in Binary Electrolyte Systems1,2 , 1966 .

[19]  R. Buck Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the nernst—planck equation applied to membrane systems☆ , 1984 .