Predictive Coding of Hyperspectral Images

Algorithms for lossless and lossy compression of hyperspectral images are presented. To greatly reduce the bit rate required to code images and to exploit the large amount of inter-band correlation, linear prediction between the bands is used. Each band, except the first one, is predicted by previously transmitted band. Once the prediction is formed, it is subtracted from the original ∗This work appeared in part in the Proceedings of the NASA Earth Science Technology Conference, 2003, and in the Proceedings of the Data Compression Conference, 2004. Research supported by NASA Contract NAS5-00213 and National Science Foundation grant number CCR-0104800. Scott Hauck was supported in part by an NSF CAREER Award and an Alfred P. Sloan Research Fellowship. Contact information: Professor Richard Ladner, University of Washington, Box 352500, Seattle, WA 981952500, (206) 543-9347, ladner@cs.washington.edu. band, and the residual (difference image) is compressed. To find the best prediction algorithm, the impact of various band orderings and measures of prediction quality on the compression ratios is studied. The resulting lossless compression algorithm displays performance that is comparable with other recently published results. To reduce the complexity of the lossy predictive encoder, a bit plane-synchronized closed loop predictor that does not require full decompression of a previous band at the encoder is proposed. The new technique achieves similar compression ratios to that of standard closed loop predictive coding and has a simpler implementation.

[1]  Michael W. Marcellin,et al.  Hyperspectral image compression using entropy-constrained predictive trellis coded quantization , 1997, IEEE Trans. Image Process..

[2]  Dan Williams,et al.  Vector quantization using spectral index-based multiple subcodebooks for hyperspectral data compression , 2000, IEEE Trans. Geosci. Remote. Sens..

[3]  Peg Shippert Why Use Hyperspectral Imagery , 2004 .

[4]  Tassos Markas,et al.  Multispectral image compression algorithms , 1993, [Proceedings] DCC `93: Data Compression Conference.

[5]  Michael J. Ryan,et al.  A suitable distortion measure for the lossy compression of hyperspectral data , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[6]  Peter No,et al.  Digital Coding of Waveforms , 1986 .

[7]  Richard E. Ladner,et al.  Reduced complexity wavelet-based predictive coding of hyperspectral images for FPGA implementation , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[8]  Robert E. Tarjan,et al.  Finding optimum branchings , 1977, Networks.

[9]  D. J. Wheeler,et al.  A Block-sorting Lossless Data Compression Algorithm , 1994 .

[10]  Luciano Alparone,et al.  Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction , 1999, IEEE Trans. Geosci. Remote. Sens..

[11]  K. H. Barratt Digital Coding of Waveforms , 1985 .

[12]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[13]  Pao-Chi Chang,et al.  Gradient algorithms for designing predictive vector quantizers , 1986, IEEE Trans. Acoust. Speech Signal Process..

[14]  Giovanni Poggi,et al.  Compression of multispectral images by three-dimensional SPIHT algorithm , 2000, IEEE Trans. Geosci. Remote. Sens..

[15]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[16]  Joan L. Mitchell,et al.  MPEG Video: Compression Standard , 1996 .

[17]  L. Rabiner,et al.  The acoustics, speech, and signal processing society - A historical perspective , 1984, IEEE ASSP Magazine.

[18]  Glen P. Abousleman,et al.  Robust hyperspectral image coding with channel-optimized trellis-coded quantization , 2002, IEEE Trans. Geosci. Remote. Sens..

[19]  William A. Pearlman,et al.  Comparison of 3D set partitioning methods in hyperspectral image compression featuring an improved 3D-SPIHT , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[20]  Nasir Memon,et al.  A bounded distortion compression scheme for hyper-spectral image data , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[21]  Pasi Fränti,et al.  Optimal layer ordering in the compression of map images , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[22]  R. E. Roger,et al.  Lossless compression of AVIRIS images , 1996, IEEE Trans. Image Process..

[23]  V. D. Vaughn,et al.  System considerations for multispectral image compression designs , 1995, IEEE Signal Process. Mag..

[24]  Ashok K. Rao,et al.  Multispectral data compression using bidirectional interband prediction , 1996, IEEE Trans. Geosci. Remote. Sens..

[25]  Hsueh-Ming Hang,et al.  Predictive Vector Quantization of Images , 1985, IEEE Trans. Commun..

[26]  Robert E. Tarjan,et al.  Efficient algorithms for finding minimum spanning trees in undirected and directed graphs , 1986, Comb..

[27]  Scott Hauck,et al.  Hyperspectral image compression on reconfigurable platforms , 2002, Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

[28]  Giovanni Motta,et al.  High performance compression of hyperspectral imagery with reduced search complexity in the compressed domain , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[29]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[30]  Mark R. Pickering,et al.  An improved M-NVQ algorithm for the compression of hyperspectral data , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[31]  Shen-En Qian,et al.  Study of real-time lossless data compression for hyperspectral imagery , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[32]  Giovanni Motta,et al.  Compression of hyperspectral imagery , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[33]  Roger L. King,et al.  Hyperspectral image cube compression combining JPEG-2000 and spectral decorrelation , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[34]  Mark R. Pickering,et al.  Efficient spatial-spectral compression of hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[35]  John F. Arnold,et al.  The lossless compression of AVIRIS images by vector quantization , 1997, IEEE Trans. Geosci. Remote. Sens..