The Anisotropy Effect of Closed-Cell Polyisocyanurate (PIR) Rigid Foam under Quasi-Static Compression Loads

[1]  Energy - Absorption and Efficiency Diagrams of Rigid PUR Foams , 2014 .

[2]  Scaling of compression strength in disordered solids: metallic foams , 2016 .

[3]  M. Lewandowska,et al.  Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials , 2016 .

[4]  L. Marșavina,et al.  Low-cycle fatigue behaviour of ductile closed-cell aluminium alloy foams , 2017 .

[5]  L. Marșavina,et al.  Application of TCD for brittle fracture of notched PUR materials , 2015 .

[6]  M. Aliha,et al.  Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+III loading , 2018 .

[7]  A. Hejna,et al.  The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams , 2017 .

[8]  L. Marșavina,et al.  Experimental and numerical crack paths in PUR foams , 2016 .

[9]  U. Cabulis,et al.  The effect of a circular hole on the tensile strength of neat and filled rigid PUR foams , 2015 .

[10]  L. Marșavina,et al.  Mechanical behavior of sandwich composite beams made of foams and functionally graded materials , 2013 .

[11]  Liviu Marsavina,et al.  Collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions , 2017 .

[12]  L. Marșavina,et al.  Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions , 2017 .

[13]  L. Marșavina,et al.  The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams , 2017, Journal of Materials Engineering and Performance.

[14]  L. Marșavina,et al.  Numerical evaluation of two-dimensional micromechanical structures of anisotropic cellular materials: case study for polyurethane rigid foams , 2015, Iranian Polymer Journal.

[15]  L. Marșavina,et al.  Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression , 2013, Journal of Physics: Conference Series.

[16]  L. Marșavina,et al.  Shear and mode II fracture of PUR foams , 2015 .

[17]  F. Berto,et al.  An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling , 2017 .

[18]  L. Marșavina,et al.  The notch effect on fracture of polyurethane materials , 2014 .

[19]  L. Marșavina,et al.  Influence of Cell Topology on Mode I Fracture Toughness of Cellular Structures , 2018 .

[20]  Emanoil Linul,et al.  Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions , 2017 .

[21]  L. Marșavina,et al.  Experimental investigations and numerical simulations of notch effect in cellular plastic materials , 2016, IOP Conference Series: Materials Science and Engineering.

[22]  L. Marșavina,et al.  The temperature and anisotropy effect on compressive behavior of cylindrical closed-cell aluminum-alloy foams , 2018 .

[23]  L. Marșavina,et al.  A comparison between dynamic and static fracture toughness of polyurethane foams , 2013 .

[24]  U. Cabulis,et al.  Anisotropy of the stiffness and strength of rigid low-density closed-cell polyisocyanurate foams , 2016 .

[25]  U. Cabulis,et al.  Rapeseed oil as main component in synthesis of bio-polyurethane-polyisocyanurate porous materials modified with carbon fibers , 2017 .

[26]  Determination of Flexural Properties of Rigid PUR Foams Using Digital Image Correlation , 2014 .

[27]  L. Marșavina,et al.  Experimental validation of micromechanical models for brittle aluminium alloy foam , 2016 .

[28]  L. Marșavina,et al.  On the Lateral Compressive Behavior of Empty and Ex-Situ Aluminum Foam-Filled Tubes at High Temperature , 2018, Materials.

[29]  U. Cabulis,et al.  Modeling the mode I fracture toughness of anisotropic low-density rigid PUR and PIR foams , 2017, International Journal of Fracture.

[30]  U. Cabulis,et al.  Innovative porous polyurethane-polyisocyanurate foams based on rapeseed oil and modified with expandable graphite , 2017 .

[31]  L. Marșavina,et al.  Experimental Determination of Mechanical Properties of Aluminium Foams Using Digital Image Correlation , 2014 .

[32]  Yong Wang,et al.  Experimental and numerical study of temperature developments in PIR core sandwich panels with joint , 2017 .

[33]  L. Marșavina,et al.  Size Effect on Fracture Toughness of Rigid Polyurethane Foams , 2012 .

[34]  L. Marșavina,et al.  The temperature effect on the axial quasi-static compressive behavior of ex-situ aluminum foam-filled tubes , 2017 .

[35]  M. Taherishargh,et al.  The mechanical properties of expanded perlite-aluminium syntactic foam at elevated temperatures , 2018 .

[36]  Liviu Marsavina,et al.  Refinements on fracture toughness of PUR foams , 2014 .