Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations

Abstract The Angstrom-scale transport characteristics of water and six different solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polyamide reverse osmosis (RO) membrane, FT-30, using non-equilibrium molecular dynamics (NEMD) simulations. Results indicate that water transport increases with an increasing fraction of connected percolated free volume, or water-accessible open space, in the membrane polymer structure. This free volume is enhanced by the dynamic structure of the membrane at the molecular level as it swells when hydrated and vibrates due to molecular collisions allowing a continuous path connecting the opposite membrane surfaces. The tortuous paths available for transport of solutes result in Brownian motion of solute molecules and hopping from pore to pore as they pass through the polymer network structure of the membrane. The transport of alcohol solutes decreases for solutes with larger Van der Waals volume, which corresponds to less available percolated free volume, or solute-accessible space, within the membrane polymer structure. However, the Van der Waals size of the dehydrated solutes is generally not a good measure to predict solute transport or rejection. Urea has reduced transport compared to ethanol, most likely due to more complex chemistry, even though urea has a smaller Van der Waals volume than ethanol. Na+ and Cl- experience the lowest transport, likely due to strong ion-water and ion-ion electrostatic interactions.

[1]  D. Cahill,et al.  Physico-chemical integrity of nanofiltration/reverse osmosis membranes during characterization by Rutherford backscattering spectrometry , 2007 .

[2]  Weimin Gao,et al.  Understanding water and ion transport behaviour and permeability through poly(amide) thin film composite membrane , 2015 .

[3]  Julian D. Gale,et al.  A computational investigation of the properties of a reverse osmosis membrane , 2010 .

[4]  Eric M.V. Hoek,et al.  A review of water treatment membrane nanotechnologies , 2011 .

[5]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[6]  Klaus Schulten,et al.  Water and proton conduction through carbon nanotubes as models for biological channels. , 2003, Biophysical journal.

[7]  A. Berezhkovskii,et al.  Single-file transport of water molecules through a carbon nanotube. , 2002, Physical review letters.

[8]  Anthony Szymczyk,et al.  Molecular simulations of polyamide reverse osmosis membranes , 2014 .

[9]  William J. Koros,et al.  Membrane-based gas separation , 1993 .

[10]  S. Hwang Fundamentals of membrane transport , 2011 .

[11]  Michael Kotelyanskii,et al.  Molecular dynamics simulation study of the mechanisms of water diffusion in a hydrated, amorphous polyamide , 1999 .

[12]  Richard M. Lueptow,et al.  Membrane rejection of nitrogen compounds. , 2001, Environmental science & technology.

[13]  Raoul Kopelman,et al.  Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm , 1976 .

[14]  Richard M. Lueptow,et al.  Rejection mechanisms for contaminants in polyamide reverse osmosis membranes , 2016 .

[15]  Andrew Pohorille,et al.  Hydrophobic effects and modeling of biophysical aqueous solution interfaces. , 2002, Chemical reviews.

[16]  Diffusive and bulk flow transport in polymers , 1973 .

[17]  J. Grossman,et al.  Water desalination across nanoporous graphene. , 2012, Nano letters.

[18]  Joseph Hoshen,et al.  Percolation and cluster distribution. III. Algorithms for the site-bond problem , 1979 .

[19]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[20]  Abdul Wahab Mohammad,et al.  Characterization and Prediction of Nanofiltration Membrane Performance—A General Assessment , 1998 .

[21]  Fernando A Escobedo,et al.  Molecular dynamics of equilibrium and pressure-driven transport properties of water through LTA-type zeolites. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[22]  Y. Kiso Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes , 2001 .

[23]  Benito Jose Marinas,et al.  Mechanistic interpretation of solute permeation through a fully aromatic polyamide reverse osmosis membrane , 1997 .

[24]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[25]  Vesselin Kolev,et al.  Hydration, porosity and water dynamics in the polyamide layer of reverse osmosis membranes: A molecular dynamics study , 2014 .

[26]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[27]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[28]  Menachem Elimelech,et al.  Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. , 2003, Environmental science & technology.

[29]  S. H. Kim,et al.  Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane. , 2005, Environmental science & technology.

[30]  Michael Kotelyanskii,et al.  Atomistic simulation of water and salt transport in the reverse osmosis membrane FT-30 , 1998 .

[31]  N. Aluru,et al.  Fast reverse osmosis using boron nitride and carbon nanotubes , 2008 .

[32]  Benny D. Freeman,et al.  Reverse osmosis desalination: water sources, technology, and today's challenges. , 2009, Water research.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  R. Kopclman Percolation and cluster distribution . I . Cluster multiple labeling technique and critical concentration algorithm , 2011 .

[35]  Lev Sarkisov,et al.  Computational structure characterisation tools in application to ordered and disordered porous materials , 2011 .

[36]  P. Jedlovszky,et al.  Properties of free surface of water-methanol mixtures. Analysis of the truly interfacial molecular layer in computer simulation. , 2008, The journal of physical chemistry. B.

[37]  M. Shimizu [Electrolyte solutions]. , 2019, [Kango] Japanese journal of nursing.

[38]  T. Arnot,et al.  A review of reverse osmosis membrane materials for desalinationDevelopment to date and future poten , 2011 .

[39]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[40]  Anthony Szymczyk,et al.  On the structure and rejection of ions by a polyamide membrane in pressure-driven molecular dynamics simulations , 2015 .

[41]  Young Mi Kim,et al.  Molecular dynamics simulations in membrane-based water treatment processes: A systematic overview , 2013 .

[42]  J. Mixter Fast , 2012 .

[43]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[44]  W. Peukert,et al.  An improved generalized AMBER force field (GAFF) for urea , 2010, Journal of molecular modeling.

[45]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[46]  Armand Soldera,et al.  Structure and dynamics of water confined in a polyamide reverse-osmosis membrane: A molecular-simulation study , 2014 .

[47]  Erin M. Lennon,et al.  Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient. , 2005, The Journal of chemical physics.

[48]  S. Keten,et al.  Tailoring the water structure and transport in nanotubes with tunable interiors. , 2015, Nanoscale.

[49]  Richard M. Lueptow,et al.  Removal of organic contaminants by RO and NF membranes. , 2005, Journal of membrane science.

[50]  T. Tsuru,et al.  A molecular dynamics simulation of pressure-driven gas permeation in a micropore potential field on silica membranes , 2007 .

[51]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[52]  M. Reinhard,et al.  Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques , 2010 .

[53]  Gerhard Hummer,et al.  Osmotic water transport through carbon nanotube membranes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Essex,et al.  Computer simulation of small molecule permeation across a lipid bilayer: dependence on bilayer properties and solute volume, size, and cross-sectional area. , 2004, Biophysical journal.

[55]  J. E. Cadotte,et al.  Interfacial Synthesis in the Preparation of Reverse Osmosis Membranes , 1981 .

[56]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[57]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[58]  R. S. Dumont,et al.  Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. , 2012, The Journal of chemical physics.

[59]  Benito Jose Marinas,et al.  Absorption of water in the active layer of reverse osmosis membranes , 2009 .

[60]  B. Roux,et al.  Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions , 2010 .

[61]  R. Baker Membrane Technology and Applications , 1999 .

[62]  O. Talu,et al.  Gibbs Dividing Surface and Helium Adsorption , 2003 .

[63]  Zhongyi Jiang,et al.  Tuning the molecular structure, separation performance and interfacial properties of poly(vinyl alco , 2011 .

[64]  E. A. Müller,et al.  In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1 , 2015, Membranes.

[65]  Ben Corry,et al.  The importance of dehydration in determining ion transport in narrow pores. , 2012, Small.

[66]  Jianwen Jiang,et al.  Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation. , 2011, The Journal of chemical physics.

[67]  Benoît Roux,et al.  Molecular dynamics study of a polymeric reverse osmosis membrane. , 2009, The journal of physical chemistry. B.

[68]  P. Keblinski,et al.  Effect of interfacial interactions and nanoscale confinement on octane melting , 2012 .

[69]  Benoît Roux,et al.  Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polya , 2011 .