Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton's iteration

[1]  Weizhang Huang,et al.  On the mesh nonsingularity of the moving mesh PDE method , 2018, Math. Comput..

[2]  Bruce T. Murray,et al.  Computation of Dendrites Using a Phase Field Model , 2017 .

[3]  Thomas Wick,et al.  Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation , 2017 .

[4]  Thomas Wick,et al.  An Error-Oriented Newton/Inexact Augmented Lagrangian Approach for Fully Monolithic Phase-Field Fracture Propagation , 2017, SIAM J. Sci. Comput..

[5]  Tymofiy Gerasimov,et al.  A line search assisted monolithic approach for phase-field computing of brittle fracture , 2016 .

[6]  Patrick E. Farrell,et al.  Linear and nonlinear solvers for variational phase‐field models of brittle fracture , 2015, 1511.08463.

[7]  Ralf Müller,et al.  On degradation functions in phase field fracture models , 2015 .

[8]  Simona Perotto,et al.  Anisotropic Mesh Adaptation for Crack Detection In Brittle Materials , 2015, SIAM J. Sci. Comput..

[9]  René de Borst,et al.  A numerical assessment of phase-field models for brittle and cohesive fracture: Γ-Convergence and stress oscillations , 2015 .

[10]  Mary F. Wheeler,et al.  A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach , 2015 .

[11]  Julien Yvonnet,et al.  A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure , 2015 .

[12]  Jie Shen,et al.  Efficient energy stable numerical schemes for a phase field moving contact line model , 2015, J. Comput. Phys..

[13]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[14]  Weizhang Huang,et al.  A geometric discretization and a simple implementation for variational mesh generation and adaptation , 2014, J. Comput. Phys..

[15]  Thomas J. R. Hughes,et al.  A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework , 2014 .

[16]  Jie Shen,et al.  Decoupled Energy Stable Schemes for Phase-Field Models of Two-Phase Complex Fluids , 2014, SIAM J. Sci. Comput..

[17]  Cv Clemens Verhoosel,et al.  Phase-field models for brittle and cohesive fracture , 2014 .

[18]  Michael J. Borden,et al.  Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture , 2012 .

[19]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[20]  Peter K. Jimack,et al.  Velocity-Based Moving Mesh Methods for Nonlinear Partial Differential Equations , 2011 .

[21]  Amir R. Khoei,et al.  Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing , 2011 .

[22]  Ralf Müller,et al.  A continuum phase field model for fracture , 2010 .

[23]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[24]  Weizhang Huang,et al.  Adaptive Moving Mesh Methods , 2010 .

[25]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[26]  J. Pokluda,et al.  Micromechanisms of Fracture and Fatigue: In a Multiscale Context , 2010 .

[27]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[28]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[29]  Jie Shen,et al.  An efficient moving mesh spectral method for the phase-field model of two-phase flows , 2009, J. Comput. Phys..

[30]  Amir R. Khoei,et al.  Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique , 2008 .

[31]  Ruo Li,et al.  Efficient computation of dendritic growth with r-adaptive finite element methods , 2008, J. Comput. Phys..

[32]  Jian Zhang,et al.  Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations , 2008, SIAM J. Sci. Comput..

[33]  P. Yu Applications of Moving Mesh Methods to the Fourier Spectral Approximations of Phase-Field Equations , 2007 .

[34]  Jie Shen,et al.  Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method , 2006, J. Comput. Phys..

[35]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .

[36]  T. Belytschko,et al.  A method for multiple crack growth in brittle materials without remeshing , 2004 .

[37]  Sutthisak Phongthanapanich,et al.  Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis , 2004 .

[38]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[39]  Weizhang Huang,et al.  Variational mesh adaptation II: error estimates and monitor functions , 2003 .

[40]  J. Mackenzie,et al.  A moving mesh method for the solution of the one-dimensional phase-field equations , 2002 .

[41]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[42]  Weizhang Huang,et al.  Variational mesh adaptation: isotropy and equidistribution , 2001 .

[43]  Weizhang Huang Practical aspects of formulation and solution of moving mesh partial differential equations , 2001 .

[44]  Christian Miehe,et al.  Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill's family of generalized strain tensors , 2001 .

[45]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .

[46]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[47]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[48]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[49]  Christian Miehe,et al.  Comparison of two algorithms for the computation of fourth-order isotropic tensor functions , 1998 .

[50]  R. N. Parkins,et al.  CRACK INTERACTION, COALESCENCE AND MIXED MODE FRACTURE MECHANICS , 1996 .

[51]  Weizhang Huang,et al.  Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .

[52]  Weizhang Huang,et al.  Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .

[53]  M. Baines Moving finite elements , 1994 .

[54]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[55]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[56]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[57]  J. Magnus On Differentiating Eigenvalues and Eigenvectors , 1985, Econometric Theory.

[58]  W. K. Anderson,et al.  Comparison of Finite Volume Flux Vector Splittings for the Euler Equations , 1985 .

[59]  Tao Tang,et al.  Moving Mesh Methods for Computational Fluid Dynamics , 2022 .