Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  T. Eck,et al.  A review of biomass burning emissions part III: intensive optical properties of biomass burning particles , 2004 .

[3]  Anca Nemuc,et al.  Corrigendum to "Regularized inversion of microphysical atmospheric particle parameters: Theory and application" [J. Comput. Phys. 237 (2013) 79-94] , 2014, J. Comput. Phys..

[4]  A. Rieder Keine Probleme mit Inversen Problemen , 2003 .

[5]  V. Freudenthaler,et al.  EARLINET: towards an advanced sustainable European aerosol lidar network , 2014 .

[7]  Qi Zhang,et al.  Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes , 2005 .

[8]  P. Thai,et al.  A review of biomass burning: Emissions and impacts on air quality, health and climate in China. , 2017, The Science of the total environment.

[9]  Barbara J. Turpin,et al.  Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass , 2001 .

[10]  C. Böckmann,et al.  Microphysical aerosol parameters from multiwavelength lidar. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  V. Amiridis,et al.  Characterization of the aerosol type using simultaneous measurements of the lidar ratio and estimations of the single scattering albedo , 2011 .

[12]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004, Applied optics.

[13]  Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model , 2014, Acta Geophysica.

[14]  L. Mona,et al.  Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy , 2011 .

[15]  A. Stohl,et al.  OPTICAL, MICROPHYSICAL AND CHEMICAL PROPERTIES OF TROPOSPHERIC AEROSOLS RETRIEVED BY A 6-WAVELENGTH RAMAN LIDAR SYSTEM DURING A BIOMASS BURNING EVENT OVER ATHENS, GREECE , 2007 .

[16]  Charles E. Kolb,et al.  Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer , 2003 .

[17]  D. Müller,et al.  Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution. , 2004, Applied optics.

[18]  Stephan Borrmann,et al.  A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)—Instrument Description and First Field Deployment , 2005 .

[19]  L. Alados-Arboledas,et al.  Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star‐and sun‐photometry , 2011 .

[20]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[21]  Per Christian Hansen,et al.  Computation of the singular value expansion , 1988, Computing.

[22]  C E Kolb,et al.  Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER , 2022 .

[23]  D. Worsnop,et al.  Online mass spectrometric aerosol measurements during the MINOS campaign (Crete, August 2001) , 2003 .

[24]  Y. Wang,et al.  Characterization of forest fire smoke event near Washington, DC in summer 2013 with multi-wavelength lidar , 2014 .

[25]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[26]  David J. Diner,et al.  Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data , 2007 .

[27]  J. Conway,et al.  A rare isocyanide derived from an unprecedented neutral yttrium(ii) bis(amide) complex , 2023, Chemical science.

[28]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004 .

[29]  C. Böckmann Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions. , 2001, Applied optics.

[30]  D. Worsnop,et al.  Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory , 2004 .

[31]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. , 2004, Applied optics.

[32]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[33]  Stephan Borrmann,et al.  Chemical, physical, and optical evolution of biomass burning aerosols: a case study , 2010 .

[34]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[35]  R. Draxler HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website , 2010 .

[36]  Y. Kaufman,et al.  Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil , 1998 .

[37]  Kenneth A. Smith,et al.  Aerosol mass spectrometer for size and composition analysis of submicron particles , 1998 .

[38]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. , 1999, Applied optics.

[39]  Christine Böckmann,et al.  Iterative regularization method for lidar remote sensing , 2006, Comput. Phys. Commun..

[40]  V. Ramanathan,et al.  Global and regional climate changes due to black carbon , 2008 .

[41]  R. Engelmann,et al.  Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest , 2009 .

[42]  Martin Gallagher,et al.  Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities: QUANTITATIVE AEROSOL MASS SPECTROMETER ANALYSIS, 2 , 2003 .

[43]  Rodanthi-Elisavet Mamouri,et al.  Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis , 2011 .

[44]  Hugh Coe,et al.  Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis , 2003 .

[45]  M. Wendisch,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment. , 2000, Applied optics.

[46]  M. Wendisch,et al.  Optical and microphysical characterization of biomass‐ burning and industrial‐pollution aerosols from‐ multiwavelength lidar and aircraft measurements , 2002 .

[47]  A. Prévôt,et al.  Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: Detection limits and ionizer background effects , 2008 .

[48]  Detlef Müller,et al.  Theory of inversion with two-dimensional regularization: profiles of microphysical particle properties derived from multiwavelength lidar measurements. , 2008, Applied optics.

[49]  D. R. Worsnop,et al.  Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols , 2005 .

[50]  Tom Johnston,et al.  Part 1. Theory , 2014 .

[51]  D. Müller,et al.  Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry , 2013 .

[52]  A. Ansmann,et al.  Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .

[53]  Douglas R. Worsnop,et al.  Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory , 2004 .

[54]  Lars Schneidenbach,et al.  Parallel software for retrieval of aerosol distribution from LIDAR data in the framework of EARLINET-ASOS , 2009, Comput. Phys. Commun..

[55]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[56]  Anca Nemuc,et al.  Regularized inversion of microphysical atmospheric particle parameters: Theory and application , 2013, J. Comput. Phys..

[57]  P. Hansen Discrete Inverse Problems: Insight and Algorithms , 2010 .

[58]  A. Ansmann,et al.  Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation. , 1999, Applied optics.

[59]  A. Ansmann,et al.  Multiwavelength Raman lidar observations of particle growth during long‐range transport of forest‐fire smoke in the free troposphere , 2007 .

[60]  J. Seinfeld,et al.  Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes , 2011 .

[61]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[62]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[63]  Albert Ansmann,et al.  Lidar and Atmospheric Aerosol Particles , 2005 .

[64]  C. Böckmann,et al.  An Adaptive Base Point Algorithm for the Retrieval of Aerosol Microphysical Properties , 2011 .

[65]  Optimization of the multiwavelength Raman Lidar during EARLI09 campaign , 2010 .

[66]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[67]  J. Allan An Aerosol Mass Spectrometer: Instrument Development, Data Analysis Techniques and Quantitative Atmospheric Particulate Measurements , 2004 .

[68]  A. Stohl,et al.  Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements , 2008 .

[69]  A. A. Isakov,et al.  Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010 , 2011 .

[70]  C. Weitkamp Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[71]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .