THE CHEMISTRY OF VIBRATIONALLY EXCITED H2 IN THE INTERSTELLAR MEDIUM

The internal energy available in vibrationally excited H2 molecules can be used to overcome or diminish the activation barrier of various chemical reactions of interest for molecular astrophysics. In this paper, we investigate in detail the impact on the chemical composition of interstellar clouds of the reactions of vibrationally excited H2 with C+, He+, O, OH, and CN, based on the available chemical kinetics data. It is found that the reaction of H2 (v>0) and C+ has a profound impact on the abundances of some molecules, especially CH+, which is a direct product and is readily formed in astronomical regions with fractional abundances of vibrationally excited H2, relative to the ground state H2, in excess of ∼10−6, independently of whether the gas is hot or not. The effects of these reactions on the chemical composition of the diffuse clouds ζOph and HD 34078, the dense photon-dominated region (PDR) Orion Bar, the planetary nebula NGC 7027, and the circumstellar disk around the B9 star HD 176386 are investigated through PDR models. We find that formation of CH+ is especially favored in dense and highly FUV illuminated regions such as the Orion Bar and the planetary nebula NGC 7027, where column densities in excess of 1013 cm−2 are predicted. In diffuse clouds, however, this mechanism is found to be not efficient enough to form CH+ with a column density close to the values derived from astronomical observations.

[1]  S. Viti,et al.  FORMATION PUMPING OF MOLECULAR HYDROGEN IN DARK CLOUDS , 2010, 1010.3040.

[2]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[3]  Calgary,et al.  Chemical stratification in the Orion Bar: JCMT Spectral Legacy Survey observations , 2009, 0902.1433.

[4]  E. Rollinde,et al.  CO emission and variable CH and CH + absorption towards HD 34078: evidence for a nascent bow shock? , 2009, 0902.0541.

[5]  E. Falgarone,et al.  Models of turbulent dissipation regions in the diffuse interstellar medium , 2009, 0901.3712.

[6]  D. Huestis Hydrogen collisions in planetary atmospheres, ionospheres, and magnetospheres , 2008 .

[7]  J. L. Bourlot,et al.  Radiative transfer revisited for emission lines in photon dominated regions , 2008 .

[8]  D. Gerlich Recent progress in experimental studies of ion‐molecule reactions relevant to interstellar chemistry , 2008 .

[9]  L. Testi,et al.  Molecular hydrogen in the circumstellar environments of Herbig Ae/Be stars probed by FUSE , 2008, 0804.4761.

[10]  Jung-Sik Yoon,et al.  Cross Sections for Electron Collisions with Hydrogen Molecules , 2008 .

[11]  T. Millar,et al.  The UMIST database for astrochemistry 2012 , 2012, 1212.6362.

[12]  I. Smith,et al.  Rate coefficients for reaction and for rotational energy transfer in collisions between CN in selected rotational levels (X 2Sigma+, v=2, N=0, 1, 6, 10, 15, and 20) and C2H2. , 2007, The Journal of chemical physics.

[13]  The penetration of Far-UV radiation into molecular clouds , 2007, astro-ph/0702033.

[14]  J. L. Bourlot,et al.  A Model for Atomic and Molecular Interstellar Gas: The Meudon PDR Code , 2006, astro-ph/0602150.

[15]  J. Cernicharo,et al.  Oxygen Chemistry in the Circumstellar Envelope of the Carbon-Rich Star IRC +10216 , 2006, astro-ph/0605645.

[16]  V. Wakelam,et al.  Modeling the ortho-to-para abundance ratio of cyclic C3H2 in cold dense cores , 2005, astro-ph/0512299.

[17]  R. Sultanov,et al.  Oxygen Chemistry in the Interstellar Medium: The Effect of Vibrational Excitation of H2 in the O(3P)+H2 Reaction , 2005 .

[18]  F. Le Petit,et al.  A far UV study of interstellar gas towards HD 34078: High excitation H2 and small scale structure , 2005 .

[19]  David A. Williams,et al.  Chemical effects of H2 formation excitation , 2003 .

[20]  J. Goicoechea,et al.  The ISO LWS high-resolution spectral survey towards Sagittarius B2 , 2003, astro-ph/0702725.

[21]  F. Bertoldi,et al.  The Rich Ultraviolet Spectrum of Vibrationally Excited Interstellar H2 toward HD 37903 , 2001 .

[22]  P. R. Wesselius,et al.  Erratum: The ISO-SWS spectrum of planetary nebula NGC 7027 , 2001 .

[23]  S. Kwok,et al.  A Chemical Model of the Neutral Envelope of the Planetary Nebula NGC 7027 , 2000 .

[24]  J. L. Bourlot,et al.  The cooling of astrophysical media by H2 , 1999 .

[25]  Yi Zhang,et al.  Quantum dynamics study of H2+CN → HCN+H reaction in full dimensions , 1998 .

[26]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[27]  M. Barlow,et al.  Discovery of Far-Infrared Pure Rotational Transitions of CH+ in NGC 7027 , 1997 .

[28]  A. Viggiano,et al.  Rate coefficients for the endothermic reactions C+(2P)+H2(D2)→CH+(CD+)+H(D) as functions of temperature from 400–1300 K , 1997 .

[29]  David A. Williams,et al.  Synthesis of interstellar CH+ without OH , 1996 .

[30]  David L. Lambert,et al.  Vibrationally excited H2, HCl and NO+ in the diffuse clouds toward zeta Ophiuchi , 1995 .

[31]  T. Truong Direct ab initio dynamics studies of vibrational‐state selected reaction rate of the OH+H2→H+H2O reaction , 1995 .

[32]  T. Snow A Possible Connection between Enhanced CH + and Intense Far-Ultraviolet Radiation Fields , 1993 .

[33]  M. Burton Excitation of molecular clouds and the emission from molecular hydrogen , 1992 .

[34]  S. Barlow,et al.  Reactions of H2 with He+ at temperatures below 40 K , 1989 .

[35]  D. Gerlich,et al.  Association reactions with state selected ions at meV collision energies: CO+ (v=0,j) + 2 CO → (CO)2++CO , 1989 .

[36]  D. Hollenbach,et al.  Molecule Formation and Infrared Emission in Fast Interstellar Shocks. III. Results for J Shocks in Molecular Clouds , 1989 .

[37]  D. Gerlich,et al.  C++H2( j)→CH++H: The effect of reagent rotation on the integral cross section in the threshold region , 1987 .

[38]  A. Wagner,et al.  Oxygen chemistry of shocked interstellar clouds. I - Rate constants for thermal and nonthermal internal energy distributions , 1987 .

[39]  S. Barlow,et al.  Reactions of C+, He+, and Ne+ with vibrationally excited H2 and D2 , 1986 .

[40]  John H. Black,et al.  Comprehensive models of diffuse interstellar clouds : physical conditions and molecular abundances , 1986 .

[41]  G. P. Forêts,et al.  Theoretical studies of interstellar molecular shocks – III. The formation of CH+ in diffuse clouds , 1986 .

[42]  A. Danks,et al.  On the CH+ ion in diffuse interstellar clouds , 1986 .

[43]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[44]  E. Herbst An update of and suggested increase in calculated radiative association rate coefficients , 1985 .

[45]  I. Dabrowski The Lyman and Werner bands of H2 , 1984 .

[46]  D. Williams,et al.  Vibrationally excited molecular hydrogen in circumstellar clouds and the interstellar CH+ abundance , 1982 .

[47]  R. Zellner,et al.  Vibrational rate enhancement in the reaction OH + H2(ν = 1) → H2O + H , 1981 .

[48]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[49]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[50]  David A. Williams,et al.  CH and CH+ Formation in Ion-Molecule Reactions , 1972 .