Elastic and electro-magnetic waves in infinite waveguides

Abstract We consider initial–boundary value problems for the equations of isotropic elasticity for several mixed boundary conditions in infinite wave guides, as well as Maxwell equations. With the help of decompositions of the displacement field into divergence- and curl-free parts, respectively, which are compatible with the boundary conditions, we obtain sharp decay rates for the solutions. The decomposed systems correspond to the second-order Maxwell equations for the electric and the magnetic field with electric and magnetic boundary conditions, respectively.

[1]  H. Weyl,et al.  Das asymptotische verteilungsgesetz der eigenschwingungen eines beliebig gestalteten elastischen körpers , 1915 .

[2]  Markus Stoth Decay estimates for solutions of linear elasticity for anisotropic media , 1996 .

[3]  R. Racke Lectures on nonlinear evolution equations , 1992 .

[4]  R. Racke Lp-Lq-estimates for solutions to the equations of linear thermoelasticity in exterior domains , 1990 .

[5]  D. Griffel,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[6]  Rainer Picard,et al.  On the low frequency asymptotics in electromagnetic theory. , 1984 .

[7]  G. Dassios Local energy decay for scattering of elastic waves , 1983 .

[8]  Kazuhiro Yamamoto Exponential energy decay of solutions of elastic wave equations with the Dirichlet condition , 1989 .

[9]  B. Kapitonov Behavior as t→∞ of the solutions of the exterior boundary-value problem for a hyperbolic system , 1987 .

[10]  M. Dreher Decay Estimates of Solutions to Wave Equations in Conical Sets , 2007 .

[11]  A Remark on the Analyticity of Spectral Functions for Some Exterior Boundary Value Problems , 1988 .

[12]  R. Leis,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[13]  H. Alt Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .

[14]  H. Kozono,et al.  $L^r$-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains , 2009 .

[15]  Mathematisches,et al.  Spectral Properties of the Laplace Operator with respect to Electric and Magnetic Boundary Conditions , 2003 .

[16]  R. Racke,et al.  Nonlinear Wave Equations in Infinite Waveguides , 2003 .

[17]  R. Racke Initial boundary value problems in thermoelasticity , 1988 .

[18]  Song Jiang,et al.  Evolution Equations in Thermoelasticity , 2000 .

[19]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[20]  Monika Susanne Doll Lp-Lq-Estimate of the Linear Equations of Thermoelasticity for Rhombic Media in R2 , 2005 .

[21]  P. Werner Aperiodic electromagnetic waves in cylindrical waveguides , 1987 .

[22]  Ein Hodge-Satz für Mannigfaltigkeiten mit nicht-glattem Rand , 1983 .

[23]  Wakako Dan On the Low‐frequency Asymptotic Expansion for some Second‐order Elliptic Systems in a Two‐dimensional Exterior Domain , 1996 .

[24]  Rainer Picard,et al.  On the boundary value problems of electro- and magnetostatics , 1982, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  Raimund Pauen Non-trapping conditions and local energy decay for hyperbolic problems , 2000, Konstanzer Schriften in Mathematik und Informatik / Universität Konstanz / Fakultät für Mathematik und Informatik.

[26]  P. Werner Regularity properties of the Laplace operator with respect to electric and magnetic boundary conditions , 1982 .

[27]  Christopher D. Sogge,et al.  Nonlinear Hyperbolic Equations in Infinite Homogeneous Waveguides , 2004, math/0411513.

[28]  D. Guidetti On interpolation with boundary conditions , 1991 .

[29]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[30]  Self-adjoint extensions of the Laplace operator with respect to electric and magnetic boundary conditions , 1979 .