An immersed finite element method for elliptic interface problems in three dimensions

This article presents an immersed finite element (IFE) method for solving the typical three-dimensional second order elliptic interface problem with an interface-independent Cartesian mesh. The local IFE space on each interface element consists of piecewise trilinear polynomials which are constructed by extending polynomials from one subelement to the whole element according to the jump conditions of the interface problem. In this space, the IFE shape functions with the Lagrange degrees of freedom can always be constructed regardless of interface location and discontinuous coefficients. The proposed IFE space is proven to have the optimal approximation capabilities to the functions satisfying the jump conditions. A group of numerical examples with representative interface geometries are presented to demonstrate features of the proposed IFE method.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[3]  R. Kafafy,et al.  Three‐dimensional immersed finite element methods for electric field simulation in composite materials , 2005 .

[4]  Jinchao Xu,et al.  Estimate of the Convergence Rate of Finite Element Solutions to Elliptic Equations of Second Order with Discontinuous Coefficients , 2013, 1311.4178.

[5]  Hongyan Liu,et al.  Modeling and an immersed finite element method for an interface wave equation , 2018, Comput. Math. Appl..

[6]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[7]  Tao Lin,et al.  A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods , 2015, J. Sci. Comput..

[8]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[9]  Xiaoming He,et al.  Three‐dimensional immersed finite‐element method for anisotropic magnetostatic/electrostatic interface problems with nonhomogeneous flux jump , 2020, International Journal for Numerical Methods in Engineering.

[10]  Slimane Adjerid,et al.  An immersed discontinuous finite element method for the Stokes problem with a moving interface , 2019, J. Comput. Appl. Math..

[11]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[12]  David S. Holder,et al.  Electrical Impedance Tomography : Methods, History and Applications , 2004 .

[13]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[14]  Tao Lin,et al.  A Higher Degree Immersed Finite Element Method Based on a Cauchy Extension for Elliptic Interface Problems , 2019, SIAM J. Numer. Anal..

[15]  Xu Zhang,et al.  Nonconforming Immersed Finite Element Methods for Interface Problems , 2013 .

[16]  Xiaoming He,et al.  A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions , 2016, J. Comput. Phys..

[17]  Xu Zhang,et al.  A Method of Lines Based on Immersed Finite Elements for Parabolic Moving Interface Problems , 2013 .

[18]  Long Chen,et al.  An interface-fitted mesh generator and virtual element methods for elliptic interface problems , 2017, J. Comput. Phys..

[19]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[20]  Tao Lin,et al.  Nonconforming immersed finite element spaces for elliptic interface problems , 2018, Comput. Math. Appl..

[21]  David A. Steinman,et al.  From image data to computational domains , 2009 .

[22]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[23]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[24]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[25]  Slimane Adjerid,et al.  An immersed discontinuous finite element method for Stokes interface problems , 2015 .

[26]  Xiaoming He,et al.  Approximation capability of a bilinear immersed finite element space , 2008 .

[27]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[28]  T. Lin,et al.  HIGHER DEGREE IMMERSED FINITE ELEMENT METHODS FOR SECOND-ORDER ELLIPTIC INTERFACE PROBLEMS , 2014 .

[29]  Jinyong Ying,et al.  A new box iterative method for a class of nonlinear interface problems with application in solving Poisson-Boltzmann equation , 2016, J. Comput. Appl. Math..

[30]  A. Brigo,et al.  The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology , 2002, Journal of molecular recognition : JMR.

[31]  Xiaoming He,et al.  Immersed finite element methods for parabolic equations with moving interface , 2013 .

[32]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[33]  Tao Lin,et al.  A Fixed Mesh Method with Immersed Finite Elements for Solving Interface Inverse Problems , 2018, Journal of Scientific Computing.

[34]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[35]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[36]  Simona Perotto,et al.  Efficient geometric reconstruction of complex geological structures , 2014, Math. Comput. Simul..

[37]  Ruchi Guo,et al.  Recovering elastic inclusions by shape optimization methods with immersed finite elements , 2020, J. Comput. Phys..

[38]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[39]  Marcus Sarkis,et al.  Higher-order finite element methods for elliptic problems with interfaces , 2015, 1505.04347.

[40]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[41]  Xiaoming He,et al.  Modeling Electrostatic Levitation of Dust Particles on Lunar Surface , 2008, IEEE Transactions on Plasma Science.

[42]  T. Lin,et al.  Approximation capabilities of immersed finite element spaces for elasticity Interface problems , 2018, Numerical Methods for Partial Differential Equations.

[43]  Ruchi Guo,et al.  A group of immersed finite-element spaces for elliptic interface problems , 2016, 1612.00919.

[44]  Marcus Sarkis,et al.  A Finite Element Method for High-Contrast Interface Problems with Error Estimates Independent of Contrast , 2015, J. Sci. Comput..

[45]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[46]  Jean-Marie Morvan,et al.  On the approximation of a smooth surface with a triangulated mesh , 2002, Comput. Geom..

[47]  Zhigang Suo,et al.  Partition of unity enrichment for bimaterial interface cracks , 2004 .

[48]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[49]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[50]  Théodore Papadopoulo,et al.  A Trilinear Immersed Finite Element Method for Solving the Electroencephalography Forward Problem , 2010, SIAM J. Sci. Comput..

[51]  Xiaoming He,et al.  Three-dimensional IFE-PIC numerical simulation of background pressure's effect on accelerator grid impingement current for ion optics , 2015 .

[52]  Fei Wang,et al.  High-order extended finite element methods for solving interface problems , 2016, Computer Methods in Applied Mechanics and Engineering.

[53]  Anna-Karin Tornberg,et al.  Multi-Dimensional Quadrature of Singular and Discontinuous Functions , 2002 .

[54]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[55]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[56]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[57]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[58]  Ruchi Guo,et al.  Design, Analysis, and Application of Immersed Finite Element Methods , 2019 .

[59]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .