ELLIPTIC HYPERGEOMETRIC FUNCTION AND 6 j -SYMBOLS FOR THE SL (2 , C ) GROUP

We show that the complex hypergeometric function describing 6 j -symbols for the SL (2 , C ) group is a special degeneration of the V -function—an elliptic analogue of the Euler–Gauss 2 F 1 hypergeometric function. For this function, we derive mixed difference–recurrence relations as limit forms of the elliptic hypergeometric equation and some symmetry transformations. At the intermediate steps of computations, there emerge a function describing the 6 j -symbols for the Faddeev modular double and the corresponding difference equations and symmetry transformations.

[1]  V. Spiridonov,et al.  Complex hypergeometric functions and integrable many-body problems , 2021, Journal of Physics A: Mathematical and Theoretical.

[2]  V. Spiridonov,et al.  Rational Hypergeometric Identities , 2020, Functional Analysis and Its Applications.

[3]  V. Spiridonov,et al.  The Endless Beta Integrals , 2020, Symmetry, Integrability and Geometry: Methods and Applications.

[4]  Y. Neretin Barnes-Ismagilov Integrals and Hypergeometric Functions of the Complex Field , 2019, 1910.10686.

[5]  A. Manashov,et al.  On Complex Gamma-Function Integrals , 2019, Symmetry, Integrability and Geometry: Methods and Applications.

[6]  V. Spiridonov,et al.  On the 6j-symbols for SL(2,C) group , 2017, 1711.07073.

[7]  A. Manashov,et al.  Gustafson integrals for SL(2,C) spin magnet , 2016, 1612.00727.

[8]  S. Sergeev,et al.  Exact solution of the Faddeev-Volkov model , 2007, 0706.3077.

[9]  V. Spiridonov Elliptic hypergeometric functions and Calogero-Sutherland-type models , 2007 .

[10]  E. Rains,et al.  Properties of Generalized Univariate Hypergeometric Functions , 2006, math/0607250.

[11]  E. Rains Limits of elliptic hypergeometric integrals , 2006, math/0607093.

[12]  Wolter G. M. Groenevelt,et al.  Wilson Function Transforms Related to Racah Coefficients , 2005, math/0501511.

[13]  V. P. Spiridonov,et al.  Theta hypergeometric integrals , 2003, math/0303205.

[14]  Vyacheslav P. Spiridonov,et al.  On the elliptic beta function , 2001 .

[15]  L. Faddeev Discrete Heisenberg-Weyl Group and modular group , 1995 .

[16]  L.Faddeev Discrete Heisenberg-Weyl Group and Modular Group , 1995, hep-th/9504111.

[17]  L. Faddeev Current-Like Variables in Massive and Massless Integrable Models , 1994, hep-th/9408041.

[18]  N. Reshetikhin,et al.  REPRESENTATIONS Of THE ALGEBRA Uq(sl(2)), q-ORTHOGONAL POLYNOMIALS AND INVARIANTS OF LINKS , 1990 .

[19]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[20]  R S Ismagilov Racah operators for principal series of representations of the group , 2007 .

[21]  S. Kharchev,et al.  Fe b 20 01 ITEP-TH-8 / 01 Unitary representations of U q ( sl ( 2 , R ) ) , the modular double , and the multiparticle q-deformed Toda chains , 2001 .

[22]  S. Ruijsenaars A Generalized Hypergeometric Function¶Satisfying Four Analytic Difference Equations¶of Askey--Wilson Type , 1999 .

[23]  Simon Ruijsenaars,et al.  First order analytic difference equations and integrable quantum systems , 1997 .

[24]  Vladimir Turaev,et al.  Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions , 1997 .

[25]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[26]  S. Feneuille,et al.  THEORY OF COMPLEX SPECTRA. , 1971 .

[27]  J. Eschner,et al.  Clebsch-gordan and Racah-wigner Coefficients for a Continuous Series of Representations of U Q (sl(2, R)) , 2022 .

[28]  G. Shortley,et al.  The Theory of Complex Spectra II , 2022 .