Variational Segmentation for Color images

We propose and analyze extensions of the Mumford-Shah functional for the color images. Our main motivation is the concept of images as surfaces. We also review most of the relevant theoretical background and computer vision literature.

[1]  M. Focardi,et al.  VARIATIONAL APPROXIMATION OF FREE-DISCONTINUITY ENERGIES WITH LINEAR GROWTH , 2002 .

[2]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[3]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[4]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[5]  Matteo Focardi,et al.  ON THE VARIATIONAL APPROXIMATION OF FREE-DISCONTINUITY PROBLEMS IN THE VECTORIAL CASE , 2001 .

[6]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[7]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[8]  Antonin Chambolle,et al.  Implementation of an adaptive finite-element approximation of the Mumford-Shah functional , 2000, Numerische Mathematik.

[9]  Josiane Zerubia,et al.  A Variational Model for Image Classification and Restoration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.

[11]  M. Rosati,et al.  Asymptotic Behavior of a Geman and McClure Discrete Model , 2000 .

[12]  Refractor Vision , 2000, The Lancet.

[13]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[14]  Ron Kimmel,et al.  Geometric-Variational Approach for Color Image Enhancement and Segmentation , 1999, Scale-Space.

[15]  Riccardo March,et al.  Finite difference solution of Euler equations arising in variational image segmentation , 1999, Numerical Algorithms.

[16]  Jayant Shah,et al.  Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations , 1999 .

[17]  A. Chambolle FINITE-DIFFERENCES DISCRETIZATIONS OF THE MUMFORD-SHAH FUNCTIONAL , 1999 .

[18]  B. Bourdin Image segmentation with a finite element method , 1999 .

[19]  Luigi Ambrosio,et al.  Higher regularity of solutions of free discontinuity problems , 1999, Differential and Integral Equations.

[20]  Yehoshua Y. Zeevi,et al.  Representation of colored images by manifolds embedded in higher dimensional non-Euclidean space , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[21]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[22]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[23]  Christoph Schnörr,et al.  A Study of a Convex Variational Diffusion Approach for Image Segmentation and Feature Extraction , 1998, Journal of Mathematical Imaging and Vision.

[24]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[25]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[26]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[27]  Michel Barlaud,et al.  Variational approach for edge-preserving regularization using coupled PDEs , 1998, IEEE Trans. Image Process..

[28]  Anthony J. Yezzi,et al.  Modified curvature motion for image smoothing and enhancement , 1998, IEEE Trans. Image Process..

[29]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..

[30]  Riccardo March,et al.  A variational method for the recovery of smooth boundaries , 1997, Image Vis. Comput..

[31]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[32]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[33]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[34]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[35]  Joyant Shah,et al.  Curve evolution and segmentation functionals: application to color images , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[36]  A. Bonnet,et al.  On the regularity of edges in image segmentation , 1996 .

[37]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[39]  Antonin Chambolle,et al.  Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations , 1995, SIAM J. Appl. Math..

[40]  J. Morel,et al.  Variational Methods in Image Segmentation: with seven image processing experiments , 1994 .

[41]  Gary E. Ford,et al.  The evolution of mean curvature in image filtering , 1994, Proceedings of 1st International Conference on Image Processing.

[42]  A. Bakushinskii,et al.  Ill-Posed Problems: Theory and Applications , 1994 .

[43]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[44]  J. Shah Piecewise smooth approximations of functions , 1994 .

[45]  J. Morel,et al.  A multiscale algorithm for image segmentation by variational method , 1994 .

[46]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[47]  Tai Sing Lee,et al.  Texture Segmentation by Minimizing Vector-Valued Energy Functionals: The Coupled-Membrane Model , 1992, ECCV.

[48]  G. Congedo,et al.  On the existence of solutions to a problem in multidimensional segmentation , 1991 .

[49]  E. D. Giorgi,et al.  Existence theorem for a minimum problem with free discontinuity set , 1989 .

[50]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[51]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[52]  Riccardo March,et al.  Variational Approximation of a Second Order Free Discontinuity Problem in Computer Vision , 2001, SIAM J. Math. Anal..

[53]  Tony F. Chan,et al.  Image segmentation using level sets and the piecewise-constant Mumford-Shah model , 2000 .

[54]  Josiane Zerubia,et al.  Classification d'images multibandes par modèles variationnels , 2000 .

[55]  Reiner Lenz,et al.  COLOR EDGE DETECTORS FOR CONICAL COLOR SPACES , 2000 .

[56]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[57]  M. Negri The anisotropy introduced by the mesh in the finite element approximation of the mumford-shah functional , 1999 .

[58]  J. Weickert Anisotropic diffusion in image processing , 1996 .

[59]  Coloma Ballester,et al.  Texture segmentation by variational methods , 1996 .

[60]  Jean-Michel Morel,et al.  The Mumford-Shah conjecture in image processing , 1996 .

[61]  Guido Gerig,et al.  Vector-Valued Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[62]  Thomas Richardson,et al.  Approximation, Computation, and Distortion in the Variational Formulation , 1994, Geometry-Driven Diffusion in Computer Vision.

[63]  David Mumford,et al.  Bayesian Rationale for the Variational Formulation , 1994, Geometry-Driven Diffusion in Computer Vision.

[64]  G. Bellettini,et al.  Discrete approximation of a free discontinuity problem , 1994 .

[65]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[66]  L. Evans Measure theory and fine properties of functions , 1992 .

[67]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[68]  L. Ambrosio,et al.  New Functionals in Calculus of Variations , 1989 .

[69]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[70]  T. Kao Functionals In The Calculus Of Variations , 1970 .

[71]  H. Piaggio Calculus of Variations , 1954, Nature.