A multifocal electroretinogram model predicting the development of diabetic retinopathy

[1]  K. Tsuzuki,et al.  Electroretinogram in diabetic retinopathy. , 1962, Archives of ophthalmology.

[2]  E. Gregersen TRANSACTIONS OF THE DANISH OPHTHALMOLOGICAL SOCIETY , 1965, Acta ophthalmologica.

[3]  G. V. Lith,et al.  THE INFLUENCE OF GLUCOSE LOADING ON THE ELECTRO‐OCULOGRAPHIC RATIO (EOG) IN NORMAL SUBJECTS AND DIABETICS , 1970 .

[4]  K. Kawasaki,et al.  Electrophysiological study on activities of neuronal and non-neuronal retinal elements in man with reference to its clinical application , 1978 .

[5]  S E Simonsen,et al.  THE VALUE OF THE OSCILLATORY POTENTIAL IN SELECTING JUVENILE DIABETICS AT RISK OF DEVELOPING PROLIFERATIVE RETINOPATHY , 1980, Metabolic and pediatric ophthalmology.

[6]  M. Songini,et al.  Dyschromatopsia in Diabetes Mellitus and its Relation to Metabolic Control , 1982, Diabetes Care.

[7]  J. Moloney,et al.  Retinopathy and retinal function in insulin-dependent diabetes mellitus. , 1982, The British journal of ophthalmology.

[8]  Chromatic and luminosity processing in retinal disease. , 1982, American journal of optometry and physiological optics.

[9]  P. Aspinall,et al.  Prediction of Diabetic Retinopathy from Clinical Variables and Color Vision Data , 1983, Diabetes Care.

[10]  J Rovamo,et al.  CONTRAST SENSITIVITY IN EVALUATION OF VISUAL IMPAIRMENT DUE TO DIABETES , 1983, Acta ophthalmologica.

[11]  M. Palta,et al.  Electroretinographic Oscillatory Potentials Predict Progression of Diabetic Retinopathy: Preliminary Report , 1984 .

[12]  R. Frank,et al.  On the pathogenesis of diabetic retinopathy. , 1984, Ophthalmology.

[13]  D. DeMets,et al.  Retinopathy in Young-onset Diabetic Patients , 1985, Diabetes Care.

[14]  M. Palta,et al.  Association of hue discrimination loss and diabetic retinopathy. , 1985, Archives of ophthalmology.

[15]  A. Moskowitz,et al.  Contrast sensitivity in diabetics with and without background retinopathy. , 1985, Archives of ophthalmology.

[16]  G. Bresnick Diabetic retinopathy viewed as a neurosensory disorder. , 1986, Archives of ophthalmology.

[17]  J. Lovasik,et al.  Clinical Evaluation of Ocular and Visual Functions in Insulin‐Dependent Juvenile Diabetics , 1986, American journal of optometry and physiological optics.

[18]  B. Petrig,et al.  Retinal blood flow autoregulation in response to an acute increase in blood pressure. , 1986, Investigative ophthalmology & visual science.

[19]  J. Brunette,et al.  Lobular delayed choroidal perfusion as an early angiographic sign of diabetic retinopathy: a preliminary report. , 1987, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[20]  M. Palta,et al.  Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. , 1987, Archives of ophthalmology.

[21]  A. Adams,et al.  Macular edema reduces B cone sensitivity in diabetics. , 1987, Applied optics.

[22]  FOVEAL AND NON‐FOVEAL MEASURES OF SHORT WAVELENGTH SENSITIVE PATHWAYS IN GLAUCOMA AND OCULAR HYPERTENSION * , 1987, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[23]  H. Fledelius Refractive change in diabetes mellitus around onset or when poorly controlled , 1987, Acta ophthalmologica.

[24]  M. Riddle,et al.  Early Loss of Blue-Sensitive Color Vision in Patients With Type I Diabetes , 1987, Diabetes Care.

[25]  New Clinical Color Threshold Test for Eye Disease , 1987, American journal of optometry and physiological optics.

[26]  Lovasik Jv,et al.  An Electrophysiological Investigation of Visual Function in Juvenile Insulin‐Dependent Diabetes Mellitus , 1988, American journal of optometry and physiological optics.

[27]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[28]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[29]  R. Carr,et al.  Hue discrimination and S cone pathway sensitivity in early diabetic retinopathy. , 1990, Investigative ophthalmology & visual science.

[30]  G. Kieselbach,et al.  Electrophysiological changes in juvenile diabetics without retinopathy. , 1990, Archives of ophthalmology.

[31]  H. Neil,et al.  Biometry of the crystalline lens in early-onset diabetes. , 1990, The British journal of ophthalmology.

[32]  K. Kawasaki,et al.  Clinical importance of electroretinographic oscillatory potentials in early detection and objective evaluation for diabetic retinopathy , 1991 .

[33]  A. Yoshida,et al.  Oscillatory potentials and permeability of the blood-retinal barrier in noninsulin-dependent diabetic patients without retinopathy. , 1991, Ophthalmology.

[34]  W Seiple,et al.  A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. , 1992, Investigative ophthalmology & visual science.

[35]  Erich E. Sutter,et al.  The field topography of ERG components in man—I. The photopic luminance response , 1992, Vision Research.

[36]  V. Porciatti,et al.  Nonselective Loss of Contrast Sensitivity in Visual System Testing in Early Type I Diabetes , 1992, Diabetes Care.

[37]  V. Greenstein,et al.  Chromatic and luminance sensitivity in diabetes and glaucoma. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  M. Schneck,et al.  Diabetic short-wavelength sensitivity: variations with induced changes in blood glucose level. , 1994, Investigative ophthalmology & visual science.

[39]  G. Bresnick,et al.  Lens-corrected visual field sensitivity and diabetes. , 1994, Investigative ophthalmology & visual science.

[40]  M. Kondo,et al.  Clinical evaluation of multifocal electroretinogram. , 1995, Investigative ophthalmology & visual science.

[41]  D. Foster,et al.  Comparison of colour discrimination and electroretinography in evaluation of visual pathway dysfunction in aretinopathic IDDM patients. , 1995, The British journal of ophthalmology.

[42]  E. Sutter,et al.  A topographic study of oscillatory potentials in man , 1995, Visual Neuroscience.

[43]  M A Bearse,et al.  Imaging localized retinal dysfunction with the multifocal electroretinogram. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  A J Adams,et al.  Optimum Parameters for Short‐Wavelength Automated Perimetry , 1996, Journal of glaucoma.

[45]  I. Immonen,et al.  Disappearance and formation rates of microaneurysms in early diabetic retinopathy. , 1996, The British journal of ophthalmology.

[46]  D. Owens,et al.  Dominant risk factors for retinopathy at clinical diagnosis in patients with type II diabetes mellitus. , 1996, Journal of diabetes and its complications.

[47]  M A Bearse,et al.  Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. , 1997, Investigative ophthalmology & visual science.

[48]  Correlation of the pilo-pupil ratio average, a new test for autonomic denervation, to the severity of diabetic retinopathy. , 1997, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[49]  G. Dahlquist,et al.  Prevalence of diabetic retinopathy in children and adolescents with IDDM A population-based multicentre study , 1997, Diabetologia.

[50]  W Seiple,et al.  A comparison of the components of the multifocal and full-field ERGs , 1997, Visual Neuroscience.

[51]  A. Weiner,et al.  Foveal cone function in nonproliferative diabetic retinopathy and macular edema. , 1997, Investigative ophthalmology & visual science.

[52]  Philip D. Harvey,et al.  Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38 , 1998, BMJ.

[53]  Kazuo Kawasaki,et al.  Electrical responses from diabetic retina , 1998, Progress in Retinal and Eye Research.

[54]  R. Holman,et al.  Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. , 1998 .

[55]  R. Carr,et al.  Assessment of local retinal function in patients with retinitis pigmentosa using the multi-focal ERG technique , 1998, Vision Research.

[56]  F. Chiarelli,et al.  Relationship between contrast sensitivity and metabolic control in diabetics with and without retinopathy. , 1998, Annals of medicine.

[57]  J. Flanagan,et al.  Short-wavelength sensitive visual field loss in patients with clinically significant diabetic macular oedema , 1998, Diabetologia.

[58]  E Zrenner,et al.  Multifocal electroretinography in retinitis pigmentosa. , 1998, American journal of ophthalmology.

[59]  G B Arden,et al.  The electroretinogram in diabetic retinopathy. , 1999, Survey of ophthalmology.

[60]  L. Kagemann,et al.  Regional differences in retinal vascular reactivity. , 1999, Investigative ophthalmology & visual science.

[61]  A J Adams,et al.  Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. , 1999, Investigative ophthalmology & visual science.

[62]  Erich E. Sutter,et al.  The optic nerve head component of the human ERG , 1999, Vision Research.

[63]  P. Laippala,et al.  Retinopathy is independently related to microalbuminuria in type 2 diabetes mellitus. , 1999, Clinical nephrology.

[64]  Are contrast sensitivity functions impaired in insulin dependent diabetics without diabetic retinopathy? , 1999, Acta medica.

[65]  Donald C. Hood,et al.  Identifying inner retinal contributions to the human multifocal ERG , 1999, Vision Research.

[66]  E. Zrenner,et al.  Multifocal oscillatory potentials in type 1 diabetes without retinopathy. , 2000, Investigative ophthalmology & visual science.

[67]  T. Gardner,et al.  New insights into the pathophysiology of diabetic retinopathy: potential cell-specific therapeutic targets. , 2000, Diabetes technology & therapeutics.

[68]  V. Greenstein,et al.  Retinal function in diabetic macular edema after focal laser photocoagulation. , 2000, Investigative ophthalmology & visual science.

[69]  Hiroko Terasaki,et al.  Blue-on-Yellow Perimetry to Evaluate S Cone Sensitivity in Diabetics , 2000, Ophthalmic Research.

[70]  Donald C Hood,et al.  Assessing retinal function with the multifocal technique , 2000, Progress in Retinal and Eye Research.

[71]  M. Schneck,et al.  The fast oscillation of the electrooculogram reveals sensitivity of the human outer retina/retinal pigment epithelium to glucose level , 2000, Vision Research.

[72]  D. Hood,et al.  The optic nerve head component of the monkey's (Macaca mulatta) multifocal electroretinogram (mERG) , 2001, Vision Research.

[73]  Masanori Hayashi,et al.  Morphological and functional analyses of diabetic macular edema by optical coherence tomography and multifocal electroretinograms , 2001, Graefe's Archive for Clinical and Experimental Ophthalmology.

[74]  E. Sutter Imaging visual function with the multifocal m-sequence technique , 2001, Vision Research.

[75]  M. Cahill,et al.  Pupillary autonomic denervation with increasing duration of diabetes mellitus , 2001, The British journal of ophthalmology.

[76]  Stephen J. Aldington,et al.  UKPDS 50: Risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis , 2001, Diabetologia.

[77]  M A Bearse,et al.  Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. , 2001, The British journal of ophthalmology.

[78]  R. Carr,et al.  Local cone and rod system function in progressive cone dystrophy. , 2002, Investigative ophthalmology & visual science.

[79]  D. Keating,et al.  The multifocal ERG: unmasked by selective cross-correlation , 2002, Vision Research.

[80]  Hendrik Lehnert,et al.  Pupil signs of sympathetic autonomic neuropathy in patients with type 1 diabetes. , 2002, Diabetes care.

[81]  D. Matthews,et al.  Children with Type 2 Diabetes: The Risks of Complications , 2002, Hormone Research in Paediatrics.

[82]  A. Kurtenbach,et al.  Anomaloscope matches in patients with diabetes mellitus , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[83]  D. Hood,et al.  Retinal origins of the primate multifocal ERG: implications for the human response. , 2002, Investigative ophthalmology & visual science.

[84]  O. Arend,et al.  Short-wavelength automated perimetry in patients with diabetes mellitus without macular edema , 2003, Graefe's Archive for Clinical and Experimental Ophthalmology.

[85]  J. Wood,et al.  Letter contrast sensitivity changes in early diabetic retinopathy , 2003, Clinical & experimental optometry.

[86]  Lin Wang,et al.  Local ganglion cell contributions to the macaque electroretinogram revealed by experimental nerve fiber layer bundle defect. , 2003, Investigative ophthalmology & visual science.

[87]  M. Craig,et al.  Do all prepubertal years of diabetes duration contribute equally to diabetes complications? , 2003, Diabetes care.

[88]  Donald C Hood,et al.  Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG. , 2003, Investigative ophthalmology & visual science.

[89]  S. Köse,et al.  Blue-on-yellow perimetry versus achromatic perimetry in type 1 diabetes patients without retinopathy. , 2003, Diabetes research and clinical practice.

[90]  A. Barber,et al.  A new view of diabetic retinopathy: a neurodegenerative disease of the eye , 2003, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[91]  N. Jewell Statistics for Epidemiology , 2003 .

[92]  M. Schneck,et al.  Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. , 2004, Archives of ophthalmology.

[93]  Stuart G. Coupland,et al.  A comparison of oscillatory potential and pattern electroretinogram measures in diabetic retinopathy , 1987, Documenta Ophthalmologica.

[94]  M. Schneck,et al.  Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. , 2004, Investigative ophthalmology & visual science.

[95]  V. Parisi,et al.  Visual evoked potentials after photostress in insulin-dependent diabetic patients with or without retinopathy , 1994, Graefe's Archive for Clinical and Experimental Ophthalmology.

[96]  William A. Hare,et al.  Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey , 2002, Documenta Ophthalmologica.

[97]  M. Schneck,et al.  Comparison of mfERG waveform components and implicit time measurement techniques for detecting functional change in early diabetic eye disease , 2004, Documenta Ophthalmologica.

[98]  R. Carr,et al.  Atypical multifocal ERG responses in patients with diseases affecting the photoreceptors , 2004, Vision Research.

[99]  N. Jewell,et al.  Formulation and evaluation of a predictive model to identify the sites of future diabetic retinopathy. , 2004, Investigative ophthalmology & visual science.

[100]  S. Yamamoto,et al.  Oscillatory potentials of multifocal electroretinogram in diabetic retinopathy , 2003, Documenta Ophthalmologica.

[101]  H. Kwaan,et al.  Studies of retinopathy and the plasma co-factor of platelet hyperaggregation in Type 1 (insulin-dependent) diabetic children , 1982, Diabetologia.

[102]  M. Schneck,et al.  Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. , 2004, Investigative ophthalmology & visual science.

[103]  M. Schneck,et al.  Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. , 2004, Investigative ophthalmology & visual science.

[104]  A. Vaag,et al.  Effect of short-term hyperglycemia on multifocal electroretinogram in diabetic patients without retinopathy. , 2004, Investigative ophthalmology & visual science.

[105]  M. Schneck,et al.  Towards optimal filtering of “standard” multifocal electroretinogram (mfERG) recordings: findings in normal and diabetic subjects , 2004, British Journal of Ophthalmology.

[106]  K. Kawasaki,et al.  Correlation between ERG oscillatory potential and psychophysical contrast sensitivity in diabetes , 1987, Documenta Ophthalmologica.

[107]  Erich E. Sutter,et al.  Distribution of oscillatory components in the central retina , 2004, Documenta Ophthalmologica.

[108]  R. Klein,et al.  Glycated haemoglobin, plasma glucose and diabetic retinopathy: cross-sectional and prospective analyses , 1993, Diabetologia.

[109]  Donald C. Hood,et al.  Guidelines for basic multifocal electroretinography (mfERG) , 2003, Documenta Ophthalmologica.

[110]  M. Lövestam-Adrian,et al.  Multifocal Electroretinography (mfERG) in Insulin Dependent Diabetics with and without Clinically Apparent Retinopathy , 2005, Documenta Ophthalmologica.

[111]  Comparison of Fast and Slow Flash Multifocal Electroretinogram Techniques: Prediction of Nonproliferative Diabetic Retinopathy Development , 2005 .

[112]  K. Torren,et al.  Comparison of the second and third oscillatory potentials with oscillatory potential power in early diabetic retinopathy , 2005, Documenta Ophthalmologica.

[113]  Rui Bernardes,et al.  Nonproliferative retinopathy in diabetes type 2. Initial stages and characterization of phenotypes , 2005, Progress in Retinal and Eye Research.

[114]  Comparison of Multifocal Electroretinogram (mFERG) First and Second Order Kernel Responses in Diabetic Patients , 2005 .

[115]  Are Abnormal Multifocal Electroretinogram (mfERG) Implicit Times Locally Related to Abnormal Adaptation in Diabetes , 2006 .

[116]  Modeling the Development of Non–Proliferative Diabetic Retinopathy Over 2 Years , 2006 .

[117]  Spatial and Temporal Relationships between Changes in Retinal Function and Diabetic Retinopathy , 2006 .

[118]  N. Osborne,et al.  The effect of insulin and glucose levels on retinal glial cell activation and pigment epithelium-derived fibroblast growth factor-2. , 2006, Molecular vision.

[119]  G. Duncan Prevalence of diabetes and impaired fasting glucose levels among US adolescents: National Health and Nutrition Examination Survey, 1999-2002. , 2006, Archives of pediatrics & adolescent medicine.

[120]  M. Grey,et al.  Management of type 2 diabetes in youth (part 2). , 2006, Journal of pediatric health care : official publication of National Association of Pediatric Nurse Associates & Practitioners.