Jurassic shift from abiotic to biotic control on marine ecological success

[1]  M. Clapham,et al.  Flood Basalts and Mass Extinctions , 2019, Annual Review of Earth and Planetary Sciences.

[2]  Wolfgang Kiessling,et al.  The r package divDyn for quantifying diversity dynamics using fossil sampling data , 2018, Methods in Ecology and Evolution.

[3]  Ethan P. White,et al.  rEDM: Applications of Empirical Dynamic Modeling from Time Series , 2018 .

[4]  T. Lenton,et al.  Late inception of a resiliently oxygenated upper ocean , 2018, Science.

[5]  K. Shirai,et al.  Temperature dependence of aragonite and calcite skeleton formation by a scleractinian coral in low mMg/Ca seawater , 2017 .

[6]  Ellen Thomas,et al.  A model for the decrease in amplitude of carbon isotope excursions across the Phanerozoic , 2017, American Journal of Science.

[7]  M. Clapham Organism activity levels predict marine invertebrate survival during ancient global change extinctions , 2017, Global change biology.

[8]  L. H. Liow,et al.  Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record , 2017, Proceedings of the Royal Society B: Biological Sciences.

[9]  A. Ridgwell,et al.  The influence of the biological pump on ocean chemistry: implications for long‐term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems , 2016, Geobiology.

[10]  C. Duarte,et al.  Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast , 2015 .

[11]  P. Wignall The Worst of Times: How Life on Earth Survived Eighty Million Years of Extinctions , 2015 .

[12]  J. Alroy A more precise speciation and extinction rate estimator , 2015, Paleobiology.

[13]  A. Prokoph,et al.  Temperatures and oxygen isotopic composition of Phanerozoic oceans , 2015 .

[14]  J. Crampton,et al.  Aragonite bias, and lack of bias, in the fossil record: lithological, environmental, and ecological controls , 2015, Paleobiology.

[15]  N. Heim,et al.  Cope’s rule in the evolution of marine animals , 2015, Science.

[16]  M. Cusack,et al.  Aragonite-calcite seas—Quantifying the gray area , 2015 .

[17]  J. Faraway Linear Models with R , 2014 .

[18]  N. Heim,et al.  Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years , 2014, Proceedings of the Royal Society B: Biological Sciences.

[19]  J. Alroy Accurate and precise estimates of origination and extinction rates , 2014, Paleobiology.

[20]  L. H. Liow,et al.  Long‐term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2 , 2012 .

[21]  George Sugihara,et al.  Detecting Causality in Complex Ecosystems , 2012, Science.

[22]  J. Tyszka,et al.  A reassessment of ‘Globigerina bathoniana’ Pazdrowa, 1969 and the palaeoceanographic significance of Jurassic planktic foraminifera from southern Poland , 2012 .

[23]  P. Allemand,et al.  Impact of the Middle Jurassic diversification of Watznaueria (coccolith-bearing algae) on the carbon cycle and δ13C of bulk marine carbonates , 2012 .

[24]  Jisuo Jin,et al.  Relic aragonite from Ordovician-Silurian brachiopods : Implications for the evolution of calcification , 2011 .

[25]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[26]  M. Kosnik,et al.  Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution , 2011, Paleobiology.

[27]  J. Ries Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification , 2010 .

[28]  J. Alroy The Shifting Balance of Diversity Among Major Marine Animal Groups , 2010, Science.

[29]  S. Porter Calcite and aragonite seas and the de novo acquisition of carbonate skeletons , 2010, Geobiology.

[30]  L. Cherns,et al.  QUANTIFYING THE IMPACTS OF EARLY DIAGENETIC ARAGONITE DISSOLUTION ON THE FOSSIL RECORD , 2009 .

[31]  L. González,et al.  Calcite and Aragonite Precipitation Under Controlled Instantaneous Supersaturation: Elucidating the Role of CaCO3 Saturation State and Mg/Ca Ratio on Calcium Carbonate Polymorphism , 2009 .

[32]  W. Hudson,et al.  Palaeobiogeography of early planktonic foraminifera , 2009 .

[33]  J. Alroy Dynamics of origination and extinction in the marine fossil record , 2008, Proceedings of the National Academy of Sciences.

[34]  W. Kiessling,et al.  Phanerozoic trends in skeletal mineralogy driven by mass extinctions , 2008 .

[35]  Karen M. Layou,et al.  Phanerozoic Trends in the Global Diversity of Marine Invertebrates , 2008, Science.

[36]  Geerat J. Vermeij,et al.  Escalation and its role in Jurassic biotic history , 2008 .

[37]  A. Knoll,et al.  Paleophysiology and End-Permian Mass Extinction , 2007 .

[38]  Joshua S Madin,et al.  Statistical Independence of Escalatory Ecological Trends in Phanerozoic Marine Invertebrates , 2006, Science.

[39]  W. Kiessling,et al.  Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems , 2006, Paleobiology.

[40]  R. V. Demicco,et al.  Model of seawater composition for the Phanerozoic , 2005 .

[41]  A. Ridgwell A Mid Mesozoic Revolution in the regulation of ocean chemistry , 2005 .

[42]  Andy Ridgwell,et al.  The role of the global carbonate cycle in the regulation and evolution of the Earth system , 2005 .

[43]  Matthew Kramer,et al.  R 2 STATISTICS FOR MIXED MODELS , 2005 .

[44]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[45]  P. Bown,et al.  Calcareous nannoplankton evolution and diversity through time , 2004 .

[46]  R. Zeebe,et al.  A simple model for the CaCO3 saturation state of the ocean: The “Strangelove,” the “Neritan,” and the “Cretan” Ocean , 2003 .

[47]  A. C. Davison Statistical models: Name Index , 2003 .

[48]  A. Knoll,et al.  Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  L. François,et al.  Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon , 2000, Nature.

[50]  M. Foote Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics , 2000, Paleobiology.

[51]  C. Sweeney,et al.  Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef , 2000 .

[52]  T. J. Palmer,et al.  RAPID COMMUNICATION Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry , 1997, Geological Magazine.

[53]  E. M. H. Arper,et al.  Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry , 1997 .

[54]  G. Webb Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? , 1996 .

[55]  L. Hardie Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. , 1996 .

[56]  A. Knoll,et al.  Anomalous carbonate precipitates: is the Precambrian the key to the Permian? , 1995, Palaios.

[57]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[58]  L. Magee,et al.  R 2 Measures Based on Wald and Likelihood Ratio Joint Significance Tests , 1990 .

[59]  Marguerite Hugueney,et al.  Evolution and escalation, an ecological history of life , 1988 .

[60]  P. H. Roth Mesozoic palaeoceanography of the North Atlantic and Tethys Oceans , 1986, Geological Society, London, Special Publications.

[61]  P. Sandberg,et al.  An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy , 1983, Nature.

[62]  D. Bottjer,et al.  Tiering in Suspension-Feeding Communities on Soft Substrata Throughout the Phanerozoic , 1982, Science.

[63]  G. Vermeij The Mesozoic marine revolution: evidence from snails, predators and grazers , 1977, Paleobiology.

[64]  H. L. Sanders,et al.  Marine Benthic Diversity: A Comparative Study , 1968, The American Naturalist.