Exploring Electro-active Functionality of Transparent Oxide Materials

Ceramics, one of the earliest materials used by humans, have been used since the Stone Age and are also one of the core materials supporting modern society. In this article, I will review the features of transparent oxides, the main components of ceramics, and the progress of research on their electro-active functionalities from the viewpoint of material design. Specifically, the emergence of the functionality of the cement component 12CaO·7Al2O3, the application of transparent oxide semiconductors to thin-film transistors for flat panel displays, and the design of wide-gap p-type semiconductors are introduced along with the progress in their research. In addition, oxide semiconductors are comprehensively discussed on the basis of the band lineup.

[1]  H. Hosono,et al.  Iron-based superconductors : materials, properties, and mechanisms , 2012 .

[2]  H. Hosono,et al.  Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. , 2012, Nature chemistry.

[3]  Andreas Klein,et al.  Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule , 2012 .

[4]  T. Kamiya,et al.  Electron injection barriers between air-stable electride with low work function, C12A7:e−, and pentacene, C60 and copper phthalocyanine , 2012 .

[5]  T. Kamiya,et al.  Thin Film Growth and Device Fabrication of Iron-Based Superconductors , 2011, 1111.0358.

[6]  Hideo Hosono,et al.  Ambipolar Oxide Thin‐Film Transistor , 2011, Advanced materials.

[7]  T. Kamiya,et al.  Highly stable amorphous In-Ga-Zn-O thin-film transistors produced by eliminating deep subgap defects , 2011 .

[8]  H. Hosono,et al.  Solvated Electrons in High-Temperature Melts and Glasses of the Room-Temperature Stable Electride [Ca24Al28O64]4+⋅4e− , 2011, Science.

[9]  T. Kamiya,et al.  New functionalities in abundant element oxides: ubiquitous element strategy , 2011, Science and technology of advanced materials.

[10]  Kun Zheng,et al.  Electron-beam-assisted superplastic shaping of nanoscale amorphous silica , 2010, Nature communications.

[11]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[12]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[13]  T. Kamiya,et al.  Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors , 2010 .

[14]  T. Kamiya,et al.  Present status of amorphous In–Ga–Zn–O thin-film transistors , 2010, Science and technology of advanced materials.

[15]  K. Takahashi,et al.  Materials, Devices, and Circuits of Transparent Amorphous-Oxide Semiconductor , 2009, Journal of Display Technology.

[16]  Hideo Hosono,et al.  Tin monoxide as an s‐orbital‐based p‐type oxide semiconductor: Electronic structures and TFT application , 2009 .

[17]  J. L. Dye Electrides: early examples of quantum confinement. , 2009, Accounts of chemical research.

[18]  H. Hosono Two classes of superconductors discovered in our material research: Iron-based high temperature superconductor and electride superconductor , 2009 .

[19]  A. Millis,et al.  Two-Dimensional Electron Gases at Oxide Interfaces , 2008 .

[20]  Hideo Hosono,et al.  p-channel thin-film transistor using p-type oxide semiconductor, SnO , 2008 .

[21]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[22]  T. Kamiya,et al.  Work Function of a Room‐Temperature, Stable Electride [Ca24Al28O64]4+(e–)4 , 2007 .

[23]  Hideo Hosono,et al.  Photoelectron Spectroscopic Study of C12A7:e - and Alq3 Interface: The Formation of a Low Electron-Injection Barrier , 2007 .

[24]  H. Hosono Recent progress in transparent oxide semiconductors: Materials and device application , 2007 .

[25]  H. Hosono,et al.  Superconductivity in an inorganic electride 12CaO x 7Al2O3:e-. , 2007, Journal of the American Chemical Society.

[26]  T. Kamiya,et al.  Metallic state in a lime-alumina compound with nanoporous structure. , 2007, Nano letters.

[27]  Masashi Kawasaki,et al.  Quantum Hall Effect in Polar Oxide Heterostructures , 2007, Science.

[28]  T. Kamiya,et al.  Development of latent images due to transient free carrier electrons by femtosecond laser pulses and its application to grating shape trimming , 2007 .

[29]  Hideo Hosono,et al.  Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application , 2006 .

[30]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[31]  T. Kamiya,et al.  Electrical properties and local structure of n-type conducting amorphous indium sulphide , 2004 .

[32]  Hideo Hosono,et al.  Field Emission of Electron Anions Clathrated in Subnanometer‐Sized Cages in [Ca24Al28O64]4+(4e–) , 2004 .

[33]  T. Kamiya,et al.  Title Single-atomic-layered quantum wells built in wide-gap semiconductors LnCuOCh (Ln=lanthanide, Ch=chalcogen) , 2004 .

[34]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[35]  Bernard Kippelen,et al.  Interface modification of ITO thin films: organic photovoltaic cells , 2003 .

[36]  H. Hosono,et al.  Electron localization and a confined electron gas in nanoporous inorganic electrides. , 2003, Physical review letters.

[37]  H. Mizoguchi,et al.  A p‐Type Amorphous Oxide Semiconductor and Room Temperature Fabrication of Amorphous Oxide p–n Heterojunction Diodes , 2003 .

[38]  Hideo Hosono,et al.  High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-) , 2003, Science.

[39]  Alex Zunger,et al.  Practical doping principles , 2003 .

[40]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[41]  K. Shimakawa,et al.  Advances in Amorphous Semiconductors , 2003 .

[42]  Masashi Kawasaki,et al.  High Mobility Thin Film Transistors with Transparent ZnO Channels , 2003 .

[43]  H. Ohta,et al.  Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial films , 2003 .

[44]  Satoshi Masuda,et al.  Transparent thin film transistors using ZnO as an active channel layer and their electrical properties , 2003 .

[45]  T. Kamiya,et al.  Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor , 2002, Nature.

[46]  Hideo Hosono,et al.  Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2 CdO ⋅ GeO 2 , 2002 .

[47]  J. Robertson Electronic Structure and Band Offsets of High-Dielectric-Constant Gate Oxides , 2002 .

[48]  H. Mizoguchi,et al.  ZnRh2O4: A p-type semiconducting oxide with a valence band composed of a low spin state of Rh3+ in a 4d6 configuration , 2002 .

[49]  S. Zhang,et al.  Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. , 2002, Physical review letters.

[50]  H. Hosono,et al.  Room-temperature excitons in wide-gap layered-oxysulfide semiconductor: LaCuOS , 2001 .

[51]  H. Hosono,et al.  Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure , 2001 .

[52]  Yasutaka Takahashi,et al.  Thin Film Transistor of ZnO Fabricated by Chemical Solution Deposition , 2001 .

[53]  M. Stoneham,et al.  Materials Modification by Electronic Excitation by Noriaki Itoh , 2000 .

[54]  Hideo Hosono,et al.  Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions , 2000 .

[55]  Georg Kresse,et al.  AB INITIO CALCULATION OF THE ORIGIN OF THE DISTORTION OF ALPHA -PBO , 1999 .

[56]  Noriaki Itoh,et al.  Materials modification by electronic excitation , 1998 .

[57]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[58]  Hideo Hosono,et al.  Novel oxide amorphous semiconductors: transparent conducting amorphous oxides , 1996 .

[59]  H. Hosono,et al.  Novel Transparent and Electroconductive Amorphous Semiconductor: Amorphous AgSbO3 Film , 1995 .

[60]  P. Edwards,et al.  Universality aspects of the metal-nonmetal transition in condensed media , 1978 .

[61]  R. Stairs Electron in Liquid Ammonia , 1957 .

[62]  Jin-seong Park,et al.  Review of recent developments in amorphous oxide semiconductor thin-film transistor devices , 2012 .

[63]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[64]  T. Kamiya,et al.  Bipolar Conduction in SnO Thin Films , 2011 .

[65]  Hideo Hosono,et al.  Material characteristics and applications of transparent amorphous oxide semiconductors , 2010 .