Corrosión atmosférica de aceros patinables de nueva generación

Los aceros patinables, "low alloy steels" o "weathering steels" como se les denomina en la literatura sajona, describen una clase de aceros estructurales de baja aleacion y alto limite elastico, que experimentan en atmosferas de baja agresividad (rural, urbana e industrial ligera)menor corrosion que el acero al carbono y ademas poseen superiores propiedades mecanicas, por lo que constituyen un material idoneo para sustituir al acero al carbono en estructuras de larga duracion.De forma generica, se pueden definir como aceros suaves, con un contenido en carbono inferior al 0,2 % en peso, a los que se han adicionado principalmente Cu, Cr, P y Ni como elementos aleantes en una cantidad global no superior al 3-5 % en peso. Inicialmente, aumentan el coste de la estructura en un 20 % con respecto al acero al carbono debido a su especial composicion, sin embargo, poseen mayor resistencia a la corrosion y no necesitan ser pintados ni requieren operaciones de repintado de mantenimiento, siendo normalmente mas rentables en ambientes de moderada agresividad que el acero al carbono pintado, despues de 15 anos en servicio. El comportamiento de los aceros patinables depende extraordinariamente de las caracteristicas ambientales de la atmosfera donde son expuestos. En la literatura existe consenso en cuanto al uso de aceros patinables en ambientes rurales y urbanos, no ocurriendo lo mismo en ambientes industriales y marinos. Al menos, en estos dos ultimos ambientes es necesario establecer, respectivamente, un nivel critico de SO2 y salinidad (Cl-) que no conviene superar para mantener las propiedades protectoras de la herrumbre frente a la corrosion atmosferica y que permitan en la practica la utilizacion del acero patinable sin pintar. Sin embargo, estos niveles criticos (SO2 y Cl-) no estan claramente definidos, limitando la aplicabilidad de los aceros patinables sin pintar. Ello ha dado lugar ultimamente a la aparicion de aceros patinables avanzados, incorporando niquel en su composicion, de mayor resistencia a la corrosion atmosferica, especialmente en atmosferas marinas. Sin embargo, no se dispone de mucha informacion sobre la corrosion atmosferica de este tipo de material. El estudio que se presenta en esta Memoria, constituye la primera investigacion en profundidad realizada en Espana sobre la corrosion atmosferica de aceros patinables convencionales y avanzados.

[1]  H. Uchida,et al.  Effect of Cr 3+ and SO 4 2- on the Structure of Rust Layer Formed on Steels by Atmospheric Corrosion , 2002 .

[2]  C. Arroyave,et al.  Simulation of a long term atmospheric corrosion process on plain and weathering steels , 2003 .

[3]  Martin Stratmann,et al.  The influence of chromium on the atmospheric corrosion of steel , 2001 .

[4]  E. Han,et al.  Effect of Ni on the ion-selectivity of rust layer on low alloy steel , 2007 .

[5]  R. Balasubramaniam,et al.  On the corrosion resistance of the Delhi iron pillar , 2000 .

[6]  R. A. Legault,et al.  Atmospheric Corrosion in Marine Environments , 1975 .

[7]  Enrique Otero Huerta Corrosión y degradación de materiales , 1997 .

[8]  Yuzo Hosoi,et al.  Electrochemical Reduction of Thick Rust Layers Formed on Steel Surfaces , 1970 .

[9]  E. Correa,et al.  Atmospheric corrosion of carbon steel in Colombia , 2010 .

[10]  H. Townsend,et al.  Atmospheric corrosion of different steels in marine, rural and industrial environments , 1999 .

[11]  E. R. Wallach,et al.  Iron–phosphorus–carbon system: Part 1 – Mechanical properties of low carbon iron–phosphorus alloys , 2000 .

[12]  Shigeru Suzuki,et al.  Characterization of Nanostructure of Rusts Formed on Weathering Steel , 2002 .

[13]  Martin Stratmann,et al.  On the atmospheric corrosion of metals which are covered with thin electrolyte layers. III, The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers , 1990 .

[14]  E. Burger,et al.  Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion , 2011 .

[15]  R. Balasubramaniam,et al.  Corrosion resistance of the Dhar iron pillar , 2003 .

[16]  Koji Hashimoto,et al.  THE MECHANISM OF ATMOSPHERIC RUSTING AND THE PROTECTIVE AMORPHOUS RUST ON LOW ALLOY STEEL , 1974 .

[17]  A. Usami,et al.  3%-Ni Weathering Steel Plate for Uncoated Bridges at High Airborne Salt Environment , 2003 .

[18]  O. R. Mattos,et al.  Impedance measurements of corroding mild steel in an automotive fuel ethanol with and without inhibitor in a two and three electrode cell , 1987 .

[19]  Ying Li,et al.  Corrosion of low carbon steel in atmospheric environments of different chloride content , 2009 .

[20]  W. Marsden I and J , 2012 .

[21]  S. Nasu,et al.  Influence of cations and anions on the formation of β-FeOOH , 2005 .

[22]  U. Schwertmann Solubility and dissolution of iron oxides , 2004, Plant and Soil.

[23]  J. Mizuki,et al.  Difference between Cr and Ni K-edge XANES Spectra of Rust Layers Formed on Fe-Based Binary Alloys Exposed to Cl-Rich Environment , 2005 .

[24]  Kazuhiko Noda,et al.  Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions , 2000 .

[25]  W. K. Boyd,et al.  Corrosion of metals in the atmosphere , 1974 .

[26]  L. Greenspan Humidity Fixed Points of Binary Saturated Aqueous Solutions , 1977, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[27]  P. Perrot Carbon – Iron – Phosphorus , 2008 .

[28]  H. Schwitter,et al.  Influence of Accelerated Weathering on the Corrosion of Low‐Alloy Steels , 1980 .

[29]  Shotaro Morimoto,et al.  Mössbauer Spectroscopic Study of Rust Formed on a Weathering Steel and a Mild Steel Exposed for a Long Term in an Industrial Environment , 2002 .

[30]  R. Balasubramaniam,et al.  Characterization of Delhi iron pillar rust by X-ray diffraction, Fourier transform infrared spectroscopy and Mössbauer spectroscopy , 2000 .

[31]  D. Cook,et al.  The role of goethite in the formation of the protective corrosion layer on steels , 1999 .

[32]  Martin Stratmann,et al.  The Influence of Copper upon the Atmospheric Corrosion of Iron , 1987 .

[33]  H. Kihira,et al.  Advancements of Weathering Steel Technologies in Japan , 2011 .

[34]  José A. González Fernández,et al.  Control de la corrosión: estudio y medida por técnicas electroquímicas , 1989 .

[35]  D. Cook An Active Coating And New Protection Technology For Weathering Steel Structures In Chloride Containing Environments , 2007 .

[36]  Pedro Albrecht,et al.  ATMOSPHERIC CORROSION RESISTANCE OF STRUCTURAL STEELS , 2003 .

[37]  U. R. Evans,et al.  Electrochemical Mechanism of Atmospheric Rusting , 1965, Nature.

[38]  Masato Yamashita,et al.  Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge , 2007 .

[39]  D. Cook,et al.  Magnetic Relaxation in Nano-Phase Chromium Substituted Goethite , 2002 .

[40]  T. Kodama,et al.  Clarification of chemical state for alloying elements in iron rust using a binary-phase potential-pH diagram and physical analyses , 2003 .

[41]  J. Cuevas,et al.  Caracterización de la pátina protectora del acero patinable ASTM A709 HPS 70W del Puente Centenario , 2011 .

[42]  D. Blanchard The ejection of drops from the sea and their enrichment with bacteria and other materials: A review , 1989 .

[43]  M. Stratmann The atmospheric corrosion of iron and steel , 1990 .

[44]  Masato Yamashita,et al.  The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century , 1994 .

[45]  Iván Díaz,et al.  Long-term atmospheric corrosion of mild steel , 2011 .

[46]  Y. Hisamatsu,et al.  Nature of Atmospheric Rust on Iron , 1980 .

[47]  Dalva Lúcia Araújo de Faria,et al.  Characterization of corrosion products formed on steels in the first months of atmospheric exposure , 2003 .

[48]  Hiroshi Kihira,et al.  Magnetic property based characterization of rust on weathering steels , 2005 .

[49]  Masato Yamashita,et al.  Composition and protective ability of rust layer formed on weathering steel exposed to various environments , 2006 .

[50]  Pete Peterson,et al.  Evaluation of Organic Coatings with Electrochemical Impedance Spectroscopy , 2004 .

[51]  Hiroshi Kihira,et al.  Control of Fe(O,OH)6 nano-network structures of rust for high atmospheric-corrosion resistance , 2005 .

[52]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[53]  H. Uchida,et al.  Recent Research and Development in Solving Atmospheric Corrosion Problems of Steel Industries in Japan , 2002 .

[54]  K. Zehnder,et al.  Efflorescence of mirabilite, epsomite and gypsum traced by automated monitoring on-site , 2009 .

[55]  H. Saricimen,et al.  Initial stages of atmospheric corrosion of steel in the Arabian Gulf , 1991 .

[56]  C. Leygraf,et al.  The Initial Stages of Atmospheric Corrosion of Iron in a Saline Environment Studied with Time-Resolved In Situ X-Ray Transmission Microscopy , 2010 .

[57]  H. Eyring,et al.  Atmospheric Corrosion , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Paul Virmani Improved Corrosion-Resistant Steel for Highway Bridge Construction , 2011 .

[59]  Pete Peterson,et al.  Evaluation of organic oatings with electrochemical impedance spectroscopy. Part 2: Application of EIS to coatings , 2004 .

[60]  F. Grandjean,et al.  Mössbauer spectroscopy applied to inorganic chemistry , 1984 .

[61]  P. Gütlich,et al.  Mössbauer Spectroscopy and Transition Metal Chemistry , 1978 .

[62]  H. E. Townsend,et al.  Effects of Alloying Elements on the Corrosion of Steel in Industrial Atmospheres , 2001 .

[63]  Desmond C. Cook The Corrosion of High Performance Steel in Adverse Environments , 2005 .

[64]  H. Shih,et al.  The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres , 1997 .

[65]  M. Morcillo,et al.  La corrosión en atmósferas marinas. Efecto de la distancia a la costa , 1998 .

[66]  L. Hihara,et al.  Atmospheric corrosion initiation on steel from predeposited NaCl salt particles in high humidity atmospheres , 2010 .

[67]  M. Morcillo Atmospheric Corrosion in Ibero-America: The MICAT Project , 1995 .

[68]  R. A. Legault,et al.  Kinetics of the Atmospheric Corrosion of Low-Alloy Steels in an Industrial Environment , 1975 .

[69]  Martin Stratmann,et al.  On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique , 1990 .

[70]  Paul Keller,et al.  Vorkommen, Entstehung und Phasenumwandlung von β‐FeOOH in Rost , 1969 .

[71]  Kenji Kita,et al.  Evaluation of Applicability for Ni-advanced Weathering Steels and Bridge High-performance Steels to Railway Steel Bridges , 2010 .

[72]  V. Raghavan,et al.  C-Fe-P (Carbon-Iron-Phosphorus) , 2004 .

[73]  S. Suzuki,et al.  Fe(O,OH)6 network structure of rust formed on weathering steel , 2003 .

[75]  J. Jaén,et al.  Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere , 2009 .

[76]  P. Dillmann,et al.  Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion , 2004 .

[77]  J. J. Rodríguez,et al.  XRD and SEM studies of the layer of corrosion products for carbon steel in various different environments in the province of Las Palmas (The Canary Islands, Spain) , 2002 .

[78]  U. R. Evans,et al.  MECHANISM OF ATMOSPHERIC RUSTING , 1972 .

[79]  J. Mizuki,et al.  Nanostructure of Protective Rust Layer on Weathering Steel Examined Using Synchrotron Radiation X-rays , 2004 .

[80]  Specification for Structural Steel for Bridges , .

[81]  F. Corvo,et al.  Changes in atmospheric corrosion rate caused by chloride ions depending on rain regime , 2005 .

[82]  S. Oh,et al.  Mössbauer Spectroscopic Study on X-ray Amorphous Substance in Rust Layer of Weathering Steel Subjected to Long-Term Exposure in North America , 2000 .

[83]  He Townsend Estimating the Atmospheric Corrosion Resistance of Weathering Steels , 2002 .

[84]  T. Misawa,et al.  The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels , 1971 .

[85]  Desmond C. Cook,et al.  Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel , 1998 .

[86]  Pedro Albrecht,et al.  Performance of weathering steel in bridges , 1984 .

[87]  Desmond C. Cook,et al.  Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments , 2005 .

[88]  Kage Isamu,et al.  Minimum Maintenance Steel Plates and Their Application Technologies for Bridge —Life Cycle Cost Reduction Technologies with Environmental Safeguards for Preserving Social Infrastructure Assets— † , 2005 .

[89]  Juan G. Castaño,et al.  Evaluación electroquímica de acerosautoprotectores en condiciones simuladasde laboratorio , 2006 .

[90]  D. M. Buck Copper in Steel - The Influence on Corrosion. , 1913 .

[91]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[92]  Manuel Morcillo,et al.  Atmospheric corrosion of mild steel. Part II - Marine atmospheres , 2000 .

[93]  T. Misawa,et al.  Structure of Protective Rust Layers Formed on Weathering Steels by Long-term Exposure in the Industrial Atmospheres of Japan and North America , 1998 .

[94]  C. Leygraf,et al.  In Situ Studies of Filiform Corrosion of Iron , 2004 .

[95]  L. Shreir,et al.  ATMOSPHERIC CORROSION OF FE-CU ALLOYS AND CU-CONTAINING STEELS , 1970 .

[96]  Manuel Morcillo,et al.  Atmospheric corrosion of mild steel. Part I - Rural and urban atmospheres , 2000 .

[97]  Atorod Azizinamini HIGH-PERFORMANCE STEEL: NEW HORIZON IN STEEL BRIDGE CONSTRUCTION , 1998 .

[98]  T. Murata,et al.  The behavior of phosphorous during passivation of weathering steel by protective patina formation , 1990 .

[99]  D. Knotkova‐Čermákova,et al.  Atmospheric Corrosion of Weathering Steels , 1982 .

[100]  A. Navrotsky,et al.  Size-Driven Structural and Thermodynamic Complexity in Iron Oxides , 2008, Science.

[101]  C. P. Larrabee,et al.  Corrosion Resistance of High-Strength Low-Alloy Steels As Influenced by Composition and Environment , 1953 .

[102]  H. Shih,et al.  Modeling of Atmospheric Corrosion Behavior of Weathering Steel in Sulfur Dioxide-Polluted Atmospheres , 1996 .

[103]  Toshihiko Aso,et al.  Estimation of Quantity of CI- from Deicing Salts on Weathering Steel Used for Bridges , 2008 .

[104]  K. Asami,et al.  In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years , 2003 .

[105]  H. Uchida,et al.  Correlation between Corrosion Rate and Composition of Crystalline Corrosion Products Formed on Weathering Steels , 2001 .

[106]  Iván Díaz,et al.  Some Clarifications Regarding Literature on Atmospheric Corrosion of Weathering Steels , 2012 .

[107]  U. R. Evans Mechanism of rusting , 1969 .

[108]  P. Decker,et al.  To coat or not to coat? The maintenance of Cor-Ten® sculptures , 2008 .

[109]  D. Cook Application of Mössbauer Spectroscopy to the Study of Corrosion , 2004 .

[110]  R. Balasubramaniam,et al.  Characterization of protective rust on ancient Indian iron using microprobe analyses , 2002 .

[111]  Joh.‐E. Hiller,et al.  Phasenumwandlungen im Rost , 1966 .

[112]  K. Inouye The role of copper (II) in the oxidation of ferrous hydroxide colloid with special reference to the corrosion of iron in an SO2-containing environment , 1968 .

[113]  Martin Stratmann,et al.  The mechanism of the oxygen reduction on rust-covered metal substrates , 1994 .

[114]  M. Morcillo,et al.  Effect of state of sea on atmospheric corrosion in coastal zones , 2001 .

[115]  J. J. Wang,et al.  Corrosion behavior of weathering steel in marine atmosphere , 2003 .

[116]  F. Armstrong,et al.  Chemical Oceanography , 1959, Nature.

[117]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[118]  H. Godard,et al.  A Rapid Method for Determining the Corrosivity of the Atmosphere at any Location , 1963, Nature.

[119]  Rosanna Pérez Pueyo Procesado y Optimización de Espectros Raman mediante Técnicas de Lógica Difusa: Aplicación a la identificación de Materiales Pictóricos , 2005 .