Direct synthesis of homogeneous Li2CoSiO4/C for enhanced ionic transport properties in Li-ion battery

[1]  M. Molenda,et al.  Stability of Li2MSiO4 (M = Mn, Co) in the carbon coating process , 2018, Solid State Ionics.

[2]  Xianhui Zhang,et al.  Carbon coating and Al-doping to improve the electrochemistry of Li2CoSiO4 polymorphs as cathode materials for lithium-ion batteries , 2018, RSC advances.

[3]  J. Locquet,et al.  Effect of doping functionalized MWCNTs on the electrochemical performances of Li2CoSiO4 for lithium-ion batteries , 2018, Ionics.

[4]  Xianhui Zhang,et al.  P-doping Li 2 CoSiO 4 /C cathode material: A joint experimental and theoretical study , 2018 .

[5]  Mingdeng Wei,et al.  Hierarchically structural TiO2 nanorods composed of rutile core and anatase shell as a durable anode material for lithium-ion intercalation , 2017 .

[6]  Feng Wu,et al.  Template-Assisted Hydrothermal Synthesis of Li₂MnSiO₄ as a Cathode Material for Lithium Ion Batteries. , 2015, ACS applied materials & interfaces.

[7]  Hai Zhu,et al.  Three-dimensional macroporous graphene-Li₂FeSiO₄ composite as cathode material for lithium-ion batteries with superior electrochemical performances. , 2014, ACS applied materials & interfaces.

[8]  Maenghyo Cho,et al.  Origin of Poor Cyclability in Li2MnSiO4 from First-Principles Calculations: Layer Exfoliation and Unstable Cycled Structure , 2014 .

[9]  M. Destro,et al.  Electrochemistry of orthosilicate-based lithium battery cathodes: a perspective. , 2014, Physical chemistry chemical physics : PCCP.

[10]  Jinlong Yang,et al.  Nanocrystalline-Li2FeSiO4 synthesized by carbon frameworks as an advanced cathode material for Li-ion batteries , 2014 .

[11]  Songtao Zhang,et al.  Partial substitution of Mn/Si with V, Cr or Al in Li2MnSiO4 nanoparticle: Dependence of the physical and electrochemical properties on the substitution strategy , 2014 .

[12]  Zhifeng Zhang,et al.  Insights into Changes of Lattice and Electronic Structure Associated with Electrochemistry of Li2CoSiO4 Polymorphs , 2014 .

[13]  Yong Zhang,et al.  Tartaric acid assisted synthesis of Li2FeSiO4/C: Effect of carbon content on the electrochemical performance of Li2FeSiO4/C for lithium ion batteries , 2014 .

[14]  T. Masese,et al.  Relationship between Phase Transition Involving Cationic Exchange and Charge–Discharge Rate in Li2FeSiO4 , 2014 .

[15]  J. Liang,et al.  Li2MnSiO4@C nanocomposite as a high-capacity cathode material for Li-ion batteries , 2013 .

[16]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[17]  L. Nazar,et al.  Hydrothermal Synthesis and Electrochemical Properties of Li2CoSiO4/C Nanospheres , 2013 .

[18]  Kai Xie,et al.  Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries , 2013 .

[19]  Jun Chen,et al.  Intergrown Li2FeSiO4·LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries. , 2013, Chemical communications.

[20]  I. Moriguchi,et al.  Direct synthesis of novel homogeneous nanocomposites of Li2MnSiO4 and carbon as a potential Li-ion battery cathode material. , 2013, Chemical communications.

[21]  B. Shao,et al.  Synthesis and electrochemical characterization of Li2FexMn1 − xSiO4/C (0 ≦ x ≦ 0.8) nanocomposite cathode for lithium-ion batteries , 2013 .

[22]  Shaohua Zhang,et al.  Impacts of in situ carbon coating on the structural, morphological and electrochemical characteristics of Li2MnSiO4 prepared by a citric acid assisted sol–gel method , 2013 .

[23]  Y. Ding,et al.  In situ generation of Li2FeSiO4 coating on MWNT as a high rate cathode material for lithium ion batteries , 2012 .

[24]  M. Kakihana,et al.  Synthesis of Zn2SiO4:Mn2+ by homogeneous precipitation using propylene glycol-modified silane , 2012 .

[25]  R. Dominko,et al.  High-pressure investigation of Li2MnSiO4 and Li2CoSiO4 electrode materials for lithium-ion batteries. , 2012, Inorganic chemistry.

[26]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[27]  Yong Yang,et al.  A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity , 2011 .

[28]  Robert Dominko,et al.  Dependence of Li2FeSiO4 electrochemistry on structure. , 2011, Journal of the American Chemical Society.

[29]  Arumugam Manthiram,et al.  Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries , 2010 .

[30]  P. Bruce,et al.  Structural Polymorphism in Li2CoSiO4 Intercalation Electrodes: A Combined Diffraction and NMR Study , 2010 .

[31]  M. Kakihana,et al.  Preparation of water soluble silicon compound and its application for synthesis of (Y,Ce,Gd)2SiO5 blue emission phosphor , 2009 .

[32]  Yong Yang,et al.  Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries , 2007 .

[33]  P. Bruce,et al.  The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries , 2007 .

[34]  B. Yi,et al.  Fast sol–gel synthesis of mesoporous Li2MnSiO4/C nanocomposite with improved electrochemical performance for lithium-ion batteries , 2013 .

[35]  M. Kakihana,et al.  Synthesis of Zn2SiO4:Mn2+ green emission phosphor by hydrothermal gelation method using a novel water soluble silicon compound , 2009 .