Rapid solidification processing with specific application to aluminium alloys

AbstractThe critical need for high strength, high performance, and cost effective materials has resulted in the use of novel processing techniques for the development of new aluminium alloys for structural applications. The highly attractive combinations of microstructure and mechanical properties achievable through rapid solidification technology (RST) have prompted the study and application of rapid solidification as a means of improving the behaviour of existing alloy systems and also developing novel alloying compositions. The rapid extraction of thermal energy associated with RST permits large deviations from equilibrium, as evidenced by the extension in solid solubility limits, sharp reductions in grain size, and a reduction in the size and number of segregated phases with concomitant development of non-equilibrium phases. In the present paper, the fundamental scientific principles underlying RST are discussed and particular emphasis is given to published studies of composition-processing-microstruc...

[1]  P. L. Goff,et al.  La coordinance des empilements dsordonns de sphres. Application aux mlanges binaires de sphres , 1968 .

[2]  H. Jones Observations on a structural transition in aluminium alloys hardened by rapid solidification , 1969 .

[3]  P. Sainfort,et al.  Large AlCuLi single quasicrystals with triacontahedral solidification morphology , 1986, Nature.

[4]  C. Suryanarayana,et al.  Solidification of aluminium-germanium alloys at high cooling rates , 1970 .

[5]  D. Skinner,et al.  Dispersion strengthened AlFeVSi alloys , 1986 .

[6]  Sam R. Coriell,et al.  Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts , 1982 .

[7]  U. Köster Kristallisation und entmischung amorpher aluminium-germanium-schichten , 1972 .

[8]  P. Duwez,et al.  Continuous series of metastable solid solutions in silver-copper alloys , 1960 .

[9]  G. W. Sears,et al.  The molecular mechanism of solidification , 1964 .

[10]  D. Michel,et al.  Fatigue crack propagation in rapidly solidified aluminum alloys at 25 °C and 300 °C , 1989 .

[11]  M. Fine,et al.  Fatigue crack initiation and microcrack propagation in X7091 type aluminum P/M alloys , 1983 .

[12]  T. Ohashi,et al.  Decomposition characteristics of Al-Mn-Zr alloys rapidly-quenched from the melt , 1986 .

[13]  R. Willnecker,et al.  Nucleation in bulk undercooled nickel-base alloys , 1988 .

[14]  O. S. Nichiporenko Shaping of powder particles during the atomization of a melt with water , 1976 .

[15]  E. Starke,et al.  The effect of intermediate thermomechanical treatments on the fatigue properties of a 7050 aluminum alloy , 1978 .

[16]  J. Lyle,et al.  Powder metallurgy approach for control of microstructure and properties in high strength aluminum alloys , 1975 .

[17]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[18]  B. Cantor,et al.  The monitoring of deposit surface temperatures during spray-forming by infrared thermal-imaging , 1989 .

[19]  D. G. Morris Bonding processes during the dynamic compaction of metallic powders , 1983 .

[20]  S. B. Chakrabortty A MODEL RELATING LOW CYCLE FATIGUE PROPERTIES AND MICROSTRUCTURE TO FATIGUE CRACK PROPAGATION RATES , 1979 .

[21]  J. R. Pickens Aluminium powder metallurgy technology for high-strength applications , 1981 .

[22]  J. Baram,et al.  Pressure characteristics at the pour-tube orifice in ultrasonic gas atomization , 1988 .

[23]  A. L. Greer,et al.  Containerless solidification of alloys in a drop-tube , 1988 .

[24]  J. Burke,et al.  Powder metallurgy for high-performance applications , 1972 .

[25]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[26]  R. Krsnik,et al.  Production of large samples of ultra-rapidly quenched alloys of aluminium by means of a rotating mill device , 1970 .

[27]  E. Starke,et al.  The Effect of ITMT’s and P/M Processing on the Microstructure and Mechanical Properties of the X7091 Alloy , 1983 .

[28]  G. Fenner,et al.  PRESSURE EFFECTS IN Ga(As1−xPx) ELECTROLUMINESCENT DIODES , 1964 .

[29]  W. Ranz Evaporation from drops : Part II , 1952 .

[30]  E. Lavernia,et al.  Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys , 1990 .

[31]  W. Kurz,et al.  Effect of solidification front velocity on the characteristics of aluminium-rich AlMn alloy solutions extended by rapid solidification☆ , 1988 .

[32]  Bendersky Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis. , 1985, Physical review letters.

[33]  T. Ohashi,et al.  Effects of Cooling Rate and Supercooling Degree on Solidified Structures of Al–Mn, Al–Cr and Al–Zr Alloys in Rapid Solidification , 1971 .

[34]  J. B. Hull,et al.  An amorphous pahse in a splat-quenched A1-17.3 at %Cu alloy , 1972 .

[35]  D. G. Morris Melting and solidification during dynamic powder compaction of tool steel , 1981 .

[36]  E. Lavernia,et al.  A tem study of the microstructures of a modified 7075 and X2020 aluminum alloys produced by liquid dynamic compaction , 1986 .

[37]  M. Fine Precipitation hardening of aluminum alloys , 1975 .

[38]  Young-Won Kim Dispersion Strengthened Aluminum Alloys , 1988 .

[39]  J. Baram,et al.  Extended Al(Mn) solution in a rapidly solidified Al-Li-Mn-Zr alloy , 1990 .

[40]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[41]  P. Duwez,et al.  Metastable Solid Solutions in the Gallium Antimonide-Germanium Pseudobinary System , 1960 .

[42]  E. Starke,et al.  The effect of copper content and degree of recrystallization on the fatigue resistance of 7XXX-type aluminum alloys II. Fatigue crack propagation , 1980 .

[43]  Shinhoo Kang,et al.  Notch tensile testing as a measure of the toughness of aluminum alloys , 1985 .

[44]  E. Lavernia,et al.  On quenching rates, secondary dendrite arm spacings and particle sizes in gas atomization , 1989 .

[45]  G. E. Dieter,et al.  Powder metallurgy processing : new techniques and analyses , 1978 .

[46]  E. Lavernia,et al.  Spray deposition of metals: A review , 1988 .

[47]  C. Suryanarayana,et al.  Rapidly Quenched Metals , 1980 .

[48]  R. Singer,et al.  Identification of dispersoid phases created in aluminum during mechanical alloying , 1980 .

[49]  K. Chattopadhyay,et al.  Rapid solidification and decomposition of a hypomonotectic Al-Cd alloy , 1980 .

[50]  R. Suzuki,et al.  Formation and crystallization of Al-Fe-Si amorphous alloys , 1983 .

[51]  H. Davies,et al.  A generalised kinetic approach to metallic glass formation , 1975 .

[52]  E. Lavernia,et al.  Pressure build-up at the metal delivery tube orifice in ultrasonic gas atomization , 1988 .

[53]  J. Szekely,et al.  Rate phenomena in process metallurgy , 1971 .

[54]  D. Michel,et al.  Fatigue crack propagation in a rapidly solidified AI-12.4Fe-1.2V-2.3Si alloy , 1990 .

[55]  Jiin-Yuh Jang,et al.  Rapid solidification of subcooled small metallic drops: Internal nucleation , 1984 .

[56]  R. Willnecker,et al.  Containerless undercooling of bulk Fe‐Ni melts , 1986 .

[57]  A. Taub,et al.  Rapidly solidified alloys and their mechanical and magnetic properties; Proceedings of the Symposium, Boston, MA, December 2-4, 1985. Volume 58 , 1986 .

[58]  H. Chen,et al.  A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids , 1970 .

[59]  J. Perepezko Nucleation in undercooled liquids , 1984 .

[60]  J. B. Hull,et al.  Some aspects of splat-quenching in an inert atmosphere and of the formation of non-crystalline phases in Al-17.3 at. % Cu, germanium and tellurium , 1974 .

[61]  G. Rai,et al.  Rapid solidification processing of 7XXX aluminium alloys: A review , 1986 .

[62]  S. Suresh,et al.  Fatigue crack growth behavior of aluminum alloy 2020 (AlCuLiMnCd) , 1984 .

[63]  J. S. Coombs,et al.  The Osprey Process , 1977 .

[64]  W. R. Johns,et al.  The aerodynamic instability and disintegration of viscous liquid sheets , 1963 .

[65]  N. Grant,et al.  Structure and properties of rapidly solidified 7075 P/M aluminum alloy modified with nickel and zirconium , 1983 .

[66]  W. Boettinger,et al.  The Effect of Rapid Solidification Velocity on the Microstructure of Ag-Cu Alloys , 1984 .

[67]  E. A. Starke,et al.  Aluminum alloys their physical and mechanical properties , 1986 .

[68]  E. Starke,et al.  The effect of grain refinement on the low cycle fatigue behavior of an AluminumZincMagnesium(Zirconium) alloy , 1977 .

[69]  N. J. Grant,et al.  A mathematical model of the spray deposition process , 1989 .

[70]  J. Hatch,et al.  Aluminum: Properties and Physical Metallurgy , 1984 .

[71]  A. K. Chakrabarti,et al.  Evaluation of aluminum and nickel alloy materials produced by spray deposition , 1988 .

[72]  N. Grant,et al.  Structure and properties of a splat cooled 2024 aluminum alloy , 1974, Metallurgical and Materials Transactions B.

[73]  Robert C. Ruhl,et al.  Cooling rates in splat cooling , 1967 .

[74]  D. Lloyd,et al.  Particles apparently exhibiting five-fold symmetry in AlLiCuMg alloys , 1985 .

[75]  Maqsood Ahmad Thermal oxidation behavior of an Al-Li-Cu-Mg-Zr alloy , 1987, Metallurgical and Materials Transactions A.

[76]  W. Boettinger Microstructural variations in rapidly solidified alloys , 1988 .

[77]  G. Abbaschian,et al.  The effect of solidification rate on microsegregation , 1986 .

[78]  S. Poon,et al.  Mechanical properties of partially crystallized aluminum based metallic glasses , 1991 .

[79]  Carlos G. Levi,et al.  Heat Flow during Rapid Solidification of Undercooled Metal Droplets , 1982 .

[80]  R. Pelloux,et al.  Properties of splat-quenched 7075 aluminum type alloys , 1976 .