Conceptual Graphs as Framework for Summarizing Short Texts

In this paper, a conceptual graph-based framework for summarizing short texts is proposed. A semantic representation is implemented through conceptual graph structures that consist of concepts and conceptual relations that stand for texts. To summarize conceptual graphs, the most important nodes are selected using a set of operations: generalization, association, ranking, and pruning, which are described. The importance of nodes on weighted conceptual graphs is measured using a modified version of HITS algorithm. In addition, some heuristic rules are used to keep coherent structures based on information from WordNet hierarchy of concepts and VerbNet semantic patterns of verbs. The experimental results show that this approach is effective in summarizing short texts.

[1]  Karen Spärck Jones Automatic summarising: The state of the art , 2007, Inf. Process. Manag..

[2]  George Giannakopoulos,et al.  Multi-document multilingual summarization corpus preparation, Part 1: Arabic, English, Greek, Chinese, Romanian , 2013 .

[3]  Michael Strube,et al.  Sentence Fusion via Dependency Graph Compression , 2008, EMNLP.

[4]  Daniel Marcu,et al.  Statistics-Based Summarization - Step One: Sentence Compression , 2000, AAAI/IAAI.

[5]  Iraklis Varlamis,et al.  SemanticRank: Ranking Keywords and Sentences Using Semantic Graphs , 2010, COLING.

[6]  Ani Nenkova,et al.  Automatic Summarization , 2011, ACL.

[7]  Juan-Manuel Torres-Moreno,et al.  Automatic Text Summarization , 2014 .

[8]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[9]  Marie-Laure Mugnier,et al.  On generalization/specialization for conceptual graphs , 1995, J. Exp. Theor. Artif. Intell..

[10]  Michael Halliday,et al.  Cohesion in English , 1976 .

[11]  Kathleen R. McKeown,et al.  Information fusion for multidocument summarization: paraphrasing and generation , 2003 .

[12]  Mark Last,et al.  Graph-Based Keyword Extraction for Single-Document Summarization , 2008, COLING 2008.

[13]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[14]  Thierry Poibeau,et al.  Automatic Text Summarization: Past, Present and Future , 2013, Multi-source, Multilingual Information Extraction and Summarization.

[15]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[16]  Igor Mel’čuk,et al.  Dependency Syntax: Theory and Practice , 1987 .

[17]  Ani Nenkova,et al.  Automatic Text Summarization of Newswire: Lessons Learned from the Document Understanding Conference , 2005, AAAI.

[18]  Daniel Marcu,et al.  Summarization beyond sentence extraction: A probabilistic approach to sentence compression , 2002, Artif. Intell..

[19]  John Dunnion,et al.  Constructing conceptual graphs using linguistic resources , 2005, ICT 2005.

[20]  Alexander F. Gelbukh,et al.  Flexible Comparison of Conceptual GraphsWork done under partial support of CONACyT, CGEPI-IPN, and SNI, Mexico , 2001, DEXA.

[21]  H. P. Edmundson,et al.  New Methods in Automatic Extracting , 1969, JACM.

[22]  Alexander F. Gelbukh,et al.  Comparison of Conceptual Graphs , 2000, MICAI.

[23]  Guy Lapalme,et al.  Fully Abstractive Approach to Guided Summarization , 2012, ACL.

[24]  Alexander F. Gelbukh,et al.  Summarizing Conceptual Graphs for Automatic Summarization Task , 2013, ICCS.

[25]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[26]  Dragomir R. Radev,et al.  LexRank: Graph-based Lexical Centrality as Salience in Text Summarization , 2004, J. Artif. Intell. Res..

[27]  Beth Levin,et al.  English Verb Classes and Alternations: A Preliminary Investigation , 1993 .

[28]  George Giannakopoulos,et al.  Multi-document Multilingual Summarization Corpus Preparation, Part 2: Czech, Hebrew and Spanish Multi-document Multilingual Summarization and Evaluation Tracks in Acl 2013 Multiling Workshop Acl 2013 Multiling Pilot Overview Cist System Report for Acl Multiling 2013 – Track 1: Multilingual Multi-doc , 2013 .

[29]  Aurelio López-López,et al.  Conceptual graph matching: a flexible algorithm and experiments , 1992, J. Exp. Theor. Artif. Intell..

[30]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[31]  Regina Barzilay,et al.  Sentence Fusion for Multidocument News Summarization , 2005, CL.

[32]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[33]  Martha Palmer,et al.  Class-Based Construction of a Verb Lexicon , 2000, AAAI/IAAI.

[34]  Rada Mihalcea,et al.  TextRank: Bringing Order into Text , 2004, EMNLP.

[35]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[36]  Mirella Lapata,et al.  Sentence Compression as Tree Transduction , 2009, J. Artif. Intell. Res..

[37]  Karen Spärck Jones Automatic summarising: factors and directions , 1998, ArXiv.

[38]  Marie-Laure Mugnier,et al.  Graph-based Knowledge Representation - Computational Foundations of Conceptual Graphs , 2008, Advanced Information and Knowledge Processing.

[39]  Ray Jackendoff,et al.  Semantic Interpretation in Generative Grammar , 1972 .

[40]  Elena Lloret,et al.  Text summarisation in progress: a literature review , 2011, Artificial Intelligence Review.

[41]  Stuart C. Shapiro Review of Knowledge representation: logical, philosophical, and computational foundations by John F. Sowa. Brooks/Cole 2000. , 2001 .

[42]  Gerardo Sierra,et al.  Sentence Compression in Spanish driven by Discourse Segmentation and Language Models , 2012, ArXiv.