From ‘Green’ Aerogels to Porous Graphite by Emulsion Gelation of Acrylonitrile

Porous carbons, including carbon (C-) aerogels, are technologically important materials, while polyacrylonitrile (PAN) is the main industrial source of graphite fiber. Graphite aerogels are synthesized herewith pyrolytically from PAN aerogels, which in turn are prepared first by solution copolymerization in toluene of acrylonitrile (AN) with ethylene glycol dimethacrylate (EGDMA) or 1,6-hexanediol diacrylate (HDDA). Gelation is induced photochemically and involves phase-separation of “live” nanoparticles that get linked covalently into a robust 3D network. The goal of this work was to transfer that process into aqueous systems and obtain similar nanostructures in terms of particle sizes, porosity, and surface areas. That was accomplished by forcing the monomers into (micro)emulsions, in essence inducing phase-separation of virtual primary particles before polymerization. Small angle neutron scattering (SANS) in combination with location-of-initiator control experiments support that monomer reservoir dropl...

[1]  Hongbing Lu,et al.  Multifunctional porous aramids (aerogels) by efficient reaction of carboxylic acids and isocyanates , 2011 .

[2]  R. Komanduri,et al.  Determination of Mechanical Properties of Sand Grains by Nanoindentation , 2011 .

[3]  Riichiro Saito,et al.  Raman spectroscopy of graphene and carbon nanotubes , 2011 .

[4]  Hongbing Lu,et al.  Polyimide Aerogels by Ring-Opening Metathesis Polymerization (ROMP) , 2011 .

[5]  D. Pan,et al.  Pregelled gel spinning of polyacrylonitrile precursor fiber , 2011 .

[6]  M. Silverstein,et al.  Synthesis of emulsion-templated porous polyacrylonitrile and its pyrolysis to porous carbon monoliths , 2011 .

[7]  M. Dresselhaus,et al.  Raman Spectroscopy in Graphene Related Systems: JORIO:RAMAN O-BK , 2011 .

[8]  C. Sotiriou-Leventis,et al.  Multifunctional Polyurea Aerogels from Isocyanates and Water. a Structure-property Case Study , 2010 .

[9]  C. Sotiriou-Leventis,et al.  One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons , 2010 .

[10]  Tammy Y. Olson,et al.  Synthesis of graphene aerogel with high electrical conductivity. , 2010, Journal of the American Chemical Society.

[11]  C. Sotiriou-Leventis,et al.  The effect of compactness on the carbothermal conversion of interpenetrating metal oxide/resorcinol-formaldehyde nanoparticle networks to porous metals and carbides , 2010 .

[12]  D. Schiraldi,et al.  The effects of physical and chemical interactions in the formation of cellulose aerogels , 2010 .

[13]  A. F. Gross,et al.  Hierarchical carbon foams with independently tunable mesopore and macropore size distributions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[14]  Siti Kartom Kamarudin,et al.  Electrode in direct methanol fuel cells , 2010 .

[15]  S. Wongkasemjit,et al.  Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors , 2010 .

[16]  Arjun Singh,et al.  Preparation and characterization of activated carbon spheres from polystyrene sulphonate beads by steam and carbon dioxide activation , 2010 .

[17]  M. Dresselhaus,et al.  Perspectives on carbon nanotubes and graphene Raman spectroscopy. , 2010, Nano letters.

[18]  J. Clark,et al.  Tuneable porous carbonaceous materials from renewable resources. , 2009, Chemical Society reviews.

[19]  S. Wongkasemjit,et al.  Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels , 2009 .

[20]  E. Antolini Carbon supports for low-temperature fuel cell catalysts , 2009 .

[21]  Christophe Daniel,et al.  Syndiotatic Polystyrene Aerogels with , ?, and e Crystalline Phases , 2009 .

[22]  C. Sotiriou-Leventis,et al.  Macroporous Electrically Conducting Carbon Networks by Pyrolysis of Isocyanate-Cross-Linked Resorcinol-Formaldehyde Aerogels , 2008 .

[23]  P. Jandera,et al.  Polymethacrylate monolithic columns for capillary liquid chromatography. , 2008, Journal of separation science.

[24]  Hongbing Lu,et al.  Cross-Linking 3D Assemblies of Nanoparticles into Mechanically Strong Aerogels by Surface-Initiated Free-Radical Polymerization , 2008 .

[25]  T. Baumann,et al.  High surface area carbon aerogel monoliths with hierarchical porosity , 2008 .

[26]  Hongbing Lu,et al.  Polymer Nanoencapsulated Mesoporous Vanadia with Unusual Ductility at Cryogenic Temperatures , 2008 .

[27]  C. Liang,et al.  Mesoporous carbon materials: synthesis and modification. , 2008, Angewandte Chemie.

[28]  L. Dao,et al.  New Class of Carbon‐Nanotube Aerogel Electrodes for Electrochemical Power Sources , 2008 .

[29]  D. Zhao,et al.  Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons† , 2008 .

[30]  Dingcai Wu,et al.  Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels , 2008 .

[31]  C. Sotiriou-Leventis,et al.  Polymer Nano-encapsulation of Templated Mesoporous Silica Monoliths with Improved Mechanical Properties , 2008 .

[32]  C. Sotiriou-Leventis,et al.  Time-Efficient Acid-Catalyzed Synthesis of Resorcinol−Formaldehyde Aerogels , 2007 .

[33]  Tatiana B Tennikova,et al.  Preparation of methacrylate monoliths. , 2007, Journal of separation science.

[34]  L. Dao,et al.  Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels , 2007 .

[35]  H. Hillhouse,et al.  PAPER www.rsc.org/materials | Journal of Materials Chemistry , 2007 .

[36]  C. Sotiriou-Leventis,et al.  Stresses at the interface of micro with nano. , 2007, Journal of the American Chemical Society.

[37]  Ahmad Fauzi Ismail,et al.  A review of heat treatment on polyacrylonitrile fiber , 2007 .

[38]  R. Hjelm,et al.  Characterization of components of nano-energetics by small-angle scattering techniques , 2007 .

[39]  M. Dresselhaus,et al.  Fabrication and structure of carbon aerogel spheres prepared by inverse suspension/emulsion polymerization and ambient pressure drying , 2007 .

[40]  N. Leventis Three-dimensional core-shell superstructures: mechanically strong aerogels. , 2007, Accounts of chemical research.

[41]  Yan-xiang Wang,et al.  Evaluation of carbonization tar in making high performance polyacrylonitrile‐based carbon fibers , 2007 .

[42]  Y. Gogotsi,et al.  MICRO- AND NANOSCALE GRAPHITE CONES AND TUBES FROM HACKMAN VALLEY, KOLA PENINSULA, RUSSIA , 2007 .

[43]  Z. Lei,et al.  Nickel-Catalyzed Fabrication of SiO2, TiO2/Graphitized Carbon, and the Resultant Graphitized Carbon with Periodically Macroporous Structure , 2007 .

[44]  T. Baumann,et al.  Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels , 2006 .

[45]  Paul J Hogg,et al.  Composites in Armor , 2006, Science.

[46]  P. Achard,et al.  Cellulose-based aerogels , 2006 .

[47]  Taeghwan Hyeon,et al.  Recent Progress in the Synthesis of Porous Carbon Materials , 2006 .

[48]  M. Jaroniec,et al.  Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. , 2006, Journal of the American Chemical Society.

[49]  S. Son,et al.  Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. , 2006, Journal of the American Chemical Society.

[50]  Ado Jorio,et al.  General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy , 2006 .

[51]  C. Sotiriou-Leventis,et al.  Nanoengineered Silica-Polymer Composite Aerogels with No Need for Supercritical Fluid Drying , 2005 .

[52]  F. Stüber,et al.  Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater , 2005 .

[53]  K. Nakanishi,et al.  Monolithic periodic mesoporous silica with well-defined macropores , 2005 .

[54]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[55]  M. Dresselhaus,et al.  Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[56]  Y. Gogotsi,et al.  Raman scattering of non–planar graphite: arched edges, polyhedral crystals, whiskers and cones , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[57]  T. Hanai Separation of polar compounds using carbon columns. , 2003, Journal of chromatography. A.

[58]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .

[59]  D. Lecomte,et al.  Drying of Silica Gels to Obtain Aerogels:Phenomenology and Basic Techniques , 2003 .

[60]  A. Pierre,et al.  Chemistry of aerogels and their applications. , 2002, Chemical reviews.

[61]  C. Sotiriou-Leventis,et al.  Nanoengineering Strong Silica Aerogels , 2002 .

[62]  F. Kang,et al.  New origin of spirals and new growth process of carbon whiskers , 2001 .

[63]  Y. Gogotsi,et al.  Graphite polyhedral crystals. , 2000, Science.

[64]  Liquan Chen,et al.  X‐Ray Diffraction and Vibrational Spectroscopic Studies on PAN‐LiTFSI Polymer Electrolytes , 2000 .

[65]  F. J. Maldonado-Hódar,et al.  Catalytic graphitization of carbon aerogels by transition metals , 2000 .

[66]  Anderson,et al.  Silica sol as a nanoglue: flexible synthesis of composite aerogels , 1999, Science.

[67]  M. Antonietti,et al.  Morphology variation of porous polymer gels by polymerization in lyotropic surfactant phases , 1999 .

[68]  M. Inagaki,et al.  Graphite formation from a mixture of Fe3O4 and polyvinylehloride at 1000°C , 1998 .

[69]  A. Mertens,et al.  Polyurethane based organic aerogels and their transformation into carbon aerogels , 1998 .

[70]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[71]  J. Fricke,et al.  Carbon aerogels from dilute catalysis of resorcinol with formaldehyde , 1997 .

[72]  G. Beaucage Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension , 1996 .

[73]  Tse-Hao Ko Raman spectrum of modified PAN‐based carbon fibers during graphitization , 1996 .

[74]  Gregory Beaucage,et al.  Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering , 1995 .

[75]  R. Caps,et al.  Correlation between structure and thermal conductivity of organic aerogels , 1995 .

[76]  R. Pekala,et al.  Structure of organic aerogels. 1. Morphology and scaling , 1993 .

[77]  O. Nilsson,et al.  Thermal and electrical conductivity of monolithic carbon aerogels , 1993 .

[78]  R. Pekala,et al.  Thermal Conductivity of Monolithic Organic Aerogels , 1992, Science.

[79]  P. A. Seeger,et al.  Small-angle neutron scattering at pulsed spallation sources , 1991 .

[80]  McKenzie,et al.  Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. , 1991, Physical review letters.

[81]  H. Ohtani,et al.  Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state carbon-13 NMR, and Fourier-transform infrared spectroscopy , 1990 .

[82]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[83]  P. Bennema,et al.  Spiral growth and surface roughening: Developments since Burton, Cabrera and Frank , 1984 .

[84]  Sow-Hsin Chen,et al.  Structure of Dense Sodium Di-2-Ethylsulfosuccinate/D2O/Decane Microemulsions , 1984 .

[85]  W. Schmatz,et al.  Multiple-scattering treatment for small-angle scattering problems , 1980 .

[86]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .

[87]  H. Marsh,et al.  Lattice-resolution electron microscopy in structural studies of non-graphitizing carbons from polyvinylidene chloride (PVDC) , 1975 .

[88]  Harry Michael Dobbins,et al.  The Change in the Refractive Index of Water as a Function of Temperature. , 1973 .

[89]  W. Rosenblatt,et al.  Micro-emulsion process for the preparation of sucrose esters , 1967 .

[90]  Neil W. Ashcroft,et al.  Structure and Resistivity of Liquid Metals , 1966 .

[91]  R. Hurley,et al.  Density of polyacrylonitrile , 1963 .

[92]  W. K. Burton,et al.  Role of Dislocations in Crystal Growth , 1949, Nature.

[93]  S. S. Kistler,et al.  Coherent Expanded-Aerogels , 1932 .

[94]  P. Pfeifer,et al.  Numerical estimation of hydrogen storage limits in carbon-based nanospaces , 2010 .

[95]  C. Sotiriou-Leventis,et al.  Smelting in the age of nano: iron aerogels , 2009 .

[96]  T. Budtova,et al.  Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. , 2008, Biomacromolecules.

[97]  A. Bajpai Fibrinogen adsorption onto macroporous polymeric surfaces: correlation with biocompatibility aspects , 2008, Journal of materials science. Materials in medicine.

[98]  Angélique Léonard,et al.  Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol-formaldehyde gels , 2006 .

[99]  A. Kercher,et al.  Microstructural evolution during charcoal carbonization by X-ray diffraction analysis , 2003 .

[100]  Y. Gogotsi,et al.  Naturally occurring graphite cones , 2003 .

[101]  L. Dao,et al.  Preparation and Modification of Polyacrylonitrile Microcellular Foam Films for Use as Electrodes in Supercapacitors , 2001 .

[102]  James A. Ritter,et al.  Effect of synthesis pH on the structure of carbon xerogels , 1997 .

[103]  H. Pierson Handbook of carbon, graphite, diamond, and fullerenes , 1992 .

[104]  R. Pekala,et al.  Aerogels derived from multifunctional organic monomers , 1992 .

[105]  A. Oberlin,et al.  Morphology and crystalline order in catalytic carbons , 1981 .

[106]  A. Oberlin,et al.  Transformation des carbones non graphitables par traitement thermique en presence de fer , 1971 .