Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining.

The realization of next-generation portable electronics and integrated microsystems is directly linked with the development of robust batteries with high energy and power density. Three-dimensional micro- and nanostructured electrodes enhance energy and power through higher surface area and thinner active materials, respectively. Here, we present a novel approach for the fabrication of hierarchical electrodes that combine benefits of both length scales. The electrodes consist of self-assembled, virus-templated nanostructures conformally coating three-dimensional micropillars. Active battery material (V(2)O(5)) is deposited using atomic layer deposition on the hierarchical micro/nanonetwork. Electrochemical characterization of these electrodes indicates a 3-fold increase in energy density compared to nanostructures alone, in agreement with the surface area increase, while maintaining the high power characteristics of nanomaterials. Investigation of capacity scaling for varying active material thickness reveals underlying limitations in nanostructured electrodes and highlights the importance of our method in controlling both energy and power density with structural hierarchy.

[1]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[2]  Alexander Kvit,et al.  Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. , 2012, ACS nano.

[3]  Chunsheng Wang,et al.  A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus‐Structured Current Collector , 2011 .

[4]  R. Ghodssi,et al.  Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates , 2010, Nanotechnology.

[5]  J. Pereira‐Ramos,et al.  High-Capacity Crystalline V2O5 Thick Films Prepared by RF Sputtering as Positive Electrodes for Rechargeable Lithium Microbatteries , 2006 .

[6]  Ranganath Teki,et al.  Nanostructured silicon anodes for lithium ion rechargeable batteries. , 2009, Small.

[7]  Surjya K. Pal,et al.  Direct growth of aligned carbon nanotubes on bulk metals , 2006, Nature nanotechnology.

[8]  Gleb Yushin,et al.  Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes , 2012 .

[9]  Peter H. L. Notten,et al.  3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries , 2010 .

[10]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[11]  J.F.M. Oudenhoven,et al.  On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries , 2009 .

[12]  Yi Cui,et al.  Silicon–Carbon Nanotube Coaxial Sponge as Li‐Ion Anodes with High Areal Capacity , 2011 .

[13]  M. Nathan,et al.  Advanced materials for the 3D microbattery , 2006 .

[14]  B Warneke,et al.  Smart Dust 立方ミリメートル・コンピュータと通信する , 2001 .

[15]  Chang-Jin Kim,et al.  Fabrication of High-Aspect-Ratio Electrode Arrays for Three-Dimensional Microbatteries , 2007, Journal of Microelectromechanical Systems.

[16]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[17]  P. Kofinas,et al.  Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[18]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[19]  M. Nathan,et al.  Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS , 2005, Journal of Microelectromechanical Systems.

[20]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[21]  Marc Madou,et al.  Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries , 2008 .

[22]  G. F. Ortiz,et al.  Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes. , 2009 .

[23]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[24]  J. Miao,et al.  Fabrication and characterization of fine pitch on-chip copper interconnects for advanced wafer level packaging by a high aspect ratio through AZ9260 resist electroplating , 2007 .

[25]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[26]  Haoshen Zhou,et al.  Nanomaterials for lithium ion batteries , 2006 .

[27]  Reza Ghodssi,et al.  Virus-enabled silicon anode for lithium-ion batteries. , 2010, ACS nano.

[28]  M. Shikida,et al.  Iop Publishing Journal of Micromechanics and Microengineering a Palmtop-sized Rotary-drive-type Biochemical Analysis System by Magnetic Bead Handling , 2008 .

[29]  B. Dunn,et al.  C-MEMS for the Manufacture of 3D Microbatteries , 2004 .

[30]  Chunsheng Wang,et al.  Self-assembled Ni/TiO2 nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffolds. , 2010, Chemical communications.

[31]  Kristofer S. J. Pister,et al.  Smart Dust: Communicating with a Cubic-Millimeter Computer , 2001, Computer.

[32]  Bruce Dunn,et al.  3-D Microbatteries , 2003 .

[33]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .

[34]  Gary W. Rubloff,et al.  Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries , 2012 .

[35]  G. Rubloff,et al.  Ozone-Based Atomic Layer Deposition of Crystalline V2O5 Films for High Performance Electrochemical Energy Storage , 2012 .

[36]  C. R. Martin,et al.  Improving the Volumetric Energy Densities of Nanostructured V 2 O 5 Electrodes Prepared Using the Template Method , 2001 .

[37]  Bruce Dunn,et al.  Three-dimensional electrodes and battery architectures , 2011 .

[38]  Chunlei Wang,et al.  Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery , 2008 .