Molecular Beam Epitaxy

Market: Materials scientists and graduate students. This volume includes the most significant contributions of world- renowned scientists in the field of Molecular Beam Expitaxy (MBE). MBE is an extremely important technique for growing single crystals by making beams of atoms and molecules strike a crystalline substrate in a vacuum. This technique has found broad applications in modern materials science.

[1]  N. Ōtsuka,et al.  Growth of HgCdTe and other Hg‐based films and multilayers by molecular beam epitaxy , 1986 .

[2]  Low noise GaAs varactor and mixer diodes prepared by molecular beam epitaxy , 1980 .

[3]  M. Konagai,et al.  Molecular beam epitaxial growth of GaAs using trimethylgallium as a Ga source , 1984 .

[4]  A. Y. Cho,et al.  Low‐noise and high‐power GaAs microwave field‐effect transistors prepared by molecular beam epitaxy , 1977 .

[5]  D. B. Fenner,et al.  Silicon surface passivation by hydrogen termination: A comparative study of preparation methods , 1989 .

[6]  A. Cho,et al.  GaAs planar technology by molecular beam epitaxy (MBE) , 1975 .

[7]  T. Tomita,et al.  Calculations of Molecular Beam Flux from Liquid Source , 1987 .

[8]  T. H. Windhorn,et al.  Room‐temperature operation of GaAs/AlGaAs diode lasers fabricated on a monolithic GaAs/Si substrate , 1985 .

[9]  N. Salansky,et al.  Molecular beam epitaxy growth of ZnSe on (100)GaAs by compound source and separate source evaporation: A comparative study , 1985 .

[10]  J. Baumard,et al.  A study of TiO system between Ti3O5 and TiO2 at high temperature by means of electrical resistivity , 1977 .

[11]  K. C. Wang,et al.  AlGaAs/InGaAs/GaAs strained-layer heterojunction bipolar transistors by molecular beam epitaxy , 1986 .

[12]  J. R. Arthur Interaction of Ga and As2 Molecular Beams with GaAs Surfaces , 1968 .

[13]  Federico Capasso New multilayer and graded gap optoelectronic and high speed devices by band gap engineering , 1984 .

[14]  B. F. Lewis,et al.  Arsenic-induced intensity oscillations in reflection high-energy electron diffraction measurements , 1986 .

[15]  Y. Campidelli,et al.  Transistor effect in monolithic Si/CoSi2/Si epitaxial structures , 1984 .

[16]  S. Hiyamizu,et al.  MBE Growth of InGaAlAs Lattice-Matched to InP by Pulsed Molecular Beam Method , 1986 .

[17]  J. Massies,et al.  X-Ray Photoelectron Spectroscopy Study of GaAs (001) and InP (001) Cleaning Procedures Prior to Molecular Beam Epitaxy , 1985 .

[18]  L. Eastman,et al.  Ultra low resistance ohmic contacts to n-GaAs , 1979 .

[19]  J. Harris,et al.  Oscillations in the surface structure of Sn-doped GaAs during growth by MBE , 1981 .

[20]  Michihiro Ito,et al.  Ultra-high throughput of GaAs and (AlGa)As layers grown by MBE with a specially designed MBE system , 1989 .

[21]  D. Wake,et al.  Monolithically integrated InGaAs/InP PIN-JFET photoreceiver , 1986 .

[22]  Toru Tatsumi,et al.  Si/Ge0.3Si0.7/Si heterojunction bipolar transistor made with Si molecular beam epitaxy , 1988 .

[23]  G. B. Stringfellow,et al.  Organometallic vapor phase epitaxial growth of InP using new phosphorus sources , 1986 .

[24]  William R. Patterson,et al.  Blue‐green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells , 1991 .

[25]  Henryk Temkin,et al.  Gas source MBE of InP and GaxIn1−xPyAs1−y : Materials properties and heterostructure lasers , 1985 .

[26]  D. J. Ashen,et al.  The incorporation and characterisation of acceptors in epitaxial GaAs , 1975 .

[27]  A. Y. Cho,et al.  Interface and doping profile characteristics with molecular‐beam epitaxy of GaAs: GaAs voltage varactor , 1974 .

[28]  T. Sakamoto,et al.  Intensity oscillations of reflection high‐energy electron diffraction during silicon molecular beam epitaxial growth , 1985 .

[29]  J. C. Garcia,et al.  Dimer arsenic source using a high efficiency catalytic cracking oven for molecular beam epitaxy , 1987 .

[30]  H. Dambkes,et al.  Si/SiGe heterojunction bipolar transistor with graded gap SiGe base made by molecular beam epitaxy , 1988, Technical Digest., International Electron Devices Meeting.

[31]  B. Joyce Some aspects of the surface behaviour of silicon , 1973 .

[32]  S. Naritsuka,et al.  Influence of growth conditions and alloy composition on deep electron traps of n‐AlxGa1−xAs grown by MBE , 1984 .

[33]  A. Y. Cho,et al.  Film Deposition by Molecular-Beam Techniques , 1971 .

[34]  Shin Hashimoto,et al.  Epitaxial growth and characterization of CaF2 on Si , 1985 .

[35]  J. Harris,et al.  Effect of hydrogen on undoped and lightly Si‐doped molecular beam epitaxial GaAs layers , 1986 .

[36]  W. Tsang Growth of InP, GaAs, and In0.53Ga0.47As by chemical beam epitaxy , 1985 .

[37]  A. Cho,et al.  Growth of extremely uniform layers by rotating substrate holder with molecular beam epitaxy for applications to electro-optic and microwave devices , 1981 .

[38]  A. Rockett,et al.  Incorporation of accelerated low-energy (50-500 eV) In + ions in Si(100) films during growth by molecular-beam epitaxy , 1989 .

[39]  E. Mendez,et al.  High mobility electron gas in selectively doped n:AlGaAs/GaAs heterojunctions , 1984 .

[40]  F. Yanagawa,et al.  Threshold Voltage Behavior for WSi/AlxGa1-xAs/GaAs MIS-Like Heterostructure FET , 1985 .

[41]  E. Scott,et al.  Factors affecting the growth of an integrated Ga1−xInxAs/InP PIN–FET by molecular beam epitaxy , 1985 .

[42]  M. J. Helix,et al.  Modulation‐doped FET threshold voltage uniformity of a high throughput 3 inch MBE system , 1984 .

[43]  F. G. Allen,et al.  Sharp profiles with high and low doping levels in silicon grown by molecular beam epitaxy , 1981 .

[44]  G. Mcguire,et al.  Characterization of VLSI materials , 1983 .

[45]  J. Kwo,et al.  Magnetic properties of single crystal rare-earth Gd-Y superlattices , 1986 .

[46]  M. Yano,et al.  Molecular Beam Epitaxy of InxGa1-xSb (0≦x≦1) , 1979 .

[47]  G. C. Osbourn,et al.  InAsSb strained‐layer superlattices for long wavelength detector applications , 1984 .

[48]  Thomas P. Pearsall,et al.  GexSi1−x strained‐layer superlattice waveguide photodetectors operating near 1.3 μm , 1986 .

[49]  P. Petroff,et al.  GaInAs(P)/InP quantum well structures grown by gas source molecular beam epitaxy , 1985 .

[50]  D. Collins The use of SnTe as the source of donor impurities in GaAs grown by molecular beam epitaxy , 1979 .

[51]  D. J. Ashen,et al.  The photoluminescence spectrum of bound excitons in indium phosphide and gallium arsenide , 1972 .

[52]  J. Nishizawa,et al.  Photostimulated molecular layer epitaxy , 1986 .

[53]  S. Hiyamizu,et al.  A New Heterostructure for 2DEG System with a Si Atomic-Planar-Doped AlAs–GaAs–AlAs Quantum Well Structure Grown by MBE , 1985 .

[54]  A. Cho,et al.  Magnesium‐doped GaAs and Alx Ga1−x As by molecular beam epitaxy , 1972 .

[55]  N. Olsson,et al.  Improvement of photoluminescence of molecular beam epitaxially grown GaxAlyIn1-x-yAs by using an As2molecular beam , 1983, IEEE Electron Device Letters.

[56]  T. Makimōto,et al.  Reduced Carbon Contamination in OMVPE Grown GaAs and AlGaAs , 1985 .

[57]  H. Jorke,et al.  Secondary implantation of Sb into Si molecular beam epitaxy layers , 1985 .

[58]  J. R. Arthur,et al.  Molecular beam epitaxy , 1975 .

[59]  I. Schuller,et al.  Epitaxial film growth and metastable phases of single crystal Dy by molecular beam epitaxy , 1988 .

[60]  Wei Wang,et al.  Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100) , 1984 .

[61]  B. F. Lewis,et al.  Molecular beam epitaxial growth and transmission electron microscopy studies of thin GaAs/InAs(100) multiple quantum well structures , 1985 .

[62]  K. Nishitani,et al.  Molecular beam epitaxy of CdTe and Hg1-xCdxTe ON GaAs (100) , 1983 .

[63]  P. J. Dean Photoluminescence as a diagnostic of semiconductors , 1982 .

[64]  R. Dingle,et al.  Luminescent p‐GaAs grown by zinc ion doped MBE , 1979 .

[65]  F. G. Allen,et al.  Thermal and Si‐beam assisted desorption of SiO2 from silicon in ultrahigh vacuum , 1987 .

[66]  G. E. Becker,et al.  Acceptor dopants in silicon molecular‐beam epitaxy , 1977 .

[67]  Manijeh Razeghi,et al.  First observation of the two‐dimensional properties of the electron gas in Ga0.49In0.51P/GaAs heterojunctions grown by low pressure metalorganic chemical vapor deposition , 1986 .

[68]  Yasuhiro Shiraki,et al.  Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE , 1986 .

[69]  H. Jorke,et al.  Mobility Enhancement in Modulation‐Doped Si ‐ Si1 − x Ge x Superlattice Grown by Molecular Beam Epitaxy , 1986 .

[70]  R. Dingle,et al.  Optical and electrical properties of Mn‐doped GaAs grown by molecular‐beam epitaxy , 1975 .

[71]  C. Wood,et al.  Improved Molecular-Beam Epitaxial GaAs Power FET's, , 1980 .

[72]  Hong,et al.  Magnetic and structural properties of single-crystal rare-earth Gd-Y superlattices. , 1985, Physical review letters.

[73]  Donald L. Smith,et al.  Molecular beam epitaxy of II‐VI compounds , 1975 .

[74]  M. Panish,et al.  Structural characterization of GaInAs(P)/InP quantum well structures grown by gas source molecular beam epitaxy , 1986 .

[75]  C. Bethea,et al.  New graded band‐gap picosecond phototransistor , 1983 .

[76]  T. C. Mcgill,et al.  Infrared photoluminescence spectra from HgTe‐CdTe superlattices , 1985 .

[77]  H. Morkoc,et al.  Modulation-doped GaAs/AlGaAs heterojunction field-effect transistors (MODFET's), ultrahigh-speed device for supercomputers , 1984, IEEE Transactions on Electron Devices.

[78]  M. Shur,et al.  Inverted GaAs/AlGaAs modulation-doped field-effect transistors with extremely high transconductances , 1986, IEEE Electron Device Letters.

[79]  D. Lang Deep‐level transient spectroscopy: A new method to characterize traps in semiconductors , 1974 .

[80]  N. Watanabe,et al.  Origin of oval defects in GaAs layers grown by molecular beam epitaxy , 1985 .

[81]  A. Cho,et al.  Initial Results of a High Throughput MBE System for Device Fabrication , 1983 .

[82]  M. Y. Yen,et al.  Role of surface kinetics and interrupted growth during molecular beam epitaxial growth of normal and inverted GaAs/AlGaAs(100) interfaces: A reflection high‐energy electron diffraction intensity dynamics study , 1985 .

[83]  L. Eastman,et al.  Superlattice buffers for GaAs power MESFET’s grown by MBE , 1984 .

[84]  Herbert Kroemer,et al.  On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende‐on‐diamond systems , 1980 .

[85]  A. Cho Growth of Periodic Structures by the Molecular‐Beam Method , 1971 .

[86]  A. Calawa Effect of H2 on residual impurities in GaAs MBE layers , 1978 .

[87]  A. Cho GaAs Epitaxy by a Molecular Beam Method: Observations of Surface Structure on the (001) Face , 1971 .

[88]  T. Drummond,et al.  Automatic shutter controller for molecular beam epitaxy , 1981 .

[89]  R. Chow,et al.  Electrical and optical properties of InP grown by molecular beam epitaxy using cracked phosphine , 1983 .

[90]  Y. Ota Si Molecular Beam Epitaxy (n on n+) with Wide Range Doping Control , 1977 .

[91]  D.L. Miller,et al.  GaAs/(GaAl)As heterojunction bipolar transistors using a self-aligned substitutional emitter process , 1986, IEEE Electron Device Letters.

[92]  K. Ploog,et al.  In situ characterization of MBE grown GaAs and AlxGa1−xAs films using RHEED, SIMS, and AES techniques , 1977 .

[93]  C. Wood RED intensity oscillations during MBE of GaAs , 1981 .

[94]  A. Cho,et al.  Molecular beam epitaxial writing of patterned GaAs epilayer structures , 1978 .

[95]  Y. G. Chai,et al.  Particulates: An origin of GaAs oval defects grown by molecular beam epitaxy , 1985 .

[96]  Molecular beam epitaxy of In0.53Ga0.47As and InP on InP by using cracker cells and gas cells , 1985 .

[97]  H. Ishikawa,et al.  Mode‐stabilized separated multiclad layer stripe geometry GaAlAs double heterostructure laser , 1980 .

[98]  T. Tatsumi,et al.  Boron heavy doping for Si molecular beam epitaxy using a HBO2 source , 1987 .

[99]  K. Shinozaki,et al.  Ionized Mg doping in molecular‐beam epitaxy of GaAs , 1986 .

[100]  G. Vincent,et al.  Si/CoSi2/Si permeable base transistor obtained by silicon molecular beam epitaxy over a CoSi2 grating , 1986 .

[101]  K. M. Beauchamp,et al.  In situ formation of superconducting YBa2Cu3O7−x thin films using pure ozone vapor oxidation , 1988 .

[102]  L. Eastman,et al.  Complex free‐carrier profile synthesis by ’’atomic‐plane’’ doping of MBE GaAs , 1980 .

[103]  K. Ploog,et al.  The effect of arsenic vapour species on electrical and optical properties of GaAs grown by molecular beam epitaxy , 1982 .

[104]  H. Morkoc,et al.  High-quality GaAs MESFET's grown on Silicon substrates by molecular-beam epitaxy , 1985, IEEE Electron Device Letters.

[105]  Very high quality single and multiple GaAs quantum wells grown by chemical beam epitaxy , 1986 .

[106]  J. Kwo Growth and properties of high Tc films in Y1Ba2Cu3O7−x perovskite by molecular beam epitaxy , 1991 .

[107]  K. Ploog,et al.  GaAs Substrate Preparation for Oval-Defect Elimination during MBE Growth , 1986 .

[108]  H. Morkoc,et al.  Characteristics of GaAs/AlGaAs MODFETs grown directly on , 1984, 1984 International Electron Devices Meeting.

[109]  G. Lilienkamp,et al.  Intensity oscillations in reflection high‐energy electron diffraction during molecular beam epitaxy of Ni on W(110) , 1987 .

[110]  O. Wada,et al.  Very low threshold current GaAs--AlGaAs GRIN-SCH lasers grown by MBE for OEIC applications , 1984 .

[111]  J. Saito,et al.  Highly uniform GaAs and AlGaAs epitaxial layers grown by molecular beam epitaxy , 1985 .

[112]  Kiyoshi Takahashi,et al.  Ionized Zn doping of GaAs molecular beam epitaxial films , 1975 .

[113]  P. Blood,et al.  The electrical characterisation of semiconductors , 1978 .

[114]  A. Cho,et al.  Single‐crystal‐aluminum Schottky‐barrier diodes prepared by molecular‐beam epitaxy (MBE) on GaAs , 1978 .

[115]  H. Morkoç,et al.  InGaAs/InAlAs hot‐electron transistor , 1986 .

[116]  N. Salansky,et al.  Study of the initial stages of growth of CdTe on (001)GaAs , 1984 .

[117]  Leo Esaki,et al.  Molecular‐beam epitaxy (MBE) of In1−xGaxAs and GaSb1−yAsy , 1977 .

[118]  W. Tsang In situ Ohmic‐contact formation to n‐ and p‐GaAs by molecular beam epitaxy , 1978 .

[119]  Naresh Chand,et al.  GaAs bipolar transistors grown on (100) Si substrates by molecular beam epitaxy , 1985 .

[120]  T. Yao,et al.  Molecular beam epitaxial growth of low‐resistivity ZnSe films , 1979 .

[121]  Toshio Katsuyama,et al.  InGaAsP/InP monolithic integrated circuit with lasers and an optical switch , 1986 .

[122]  Lewis M. Fraas,et al.  A new low temperature III–V multilayer growth technique: Vacuum metalorganic chemical vapor deposition , 1981 .

[123]  A. Million,et al.  Characterization of CdxHg1-xTe p-type layers grown by MBE , 1982 .

[124]  G. Davies,et al.  GROWTH AND DOPING OF GALLIUM ARSENIDE USING MOLECULAR BEAM EPITAXY (MBE): THERMODYNAMIC AND KINETIC ASPECTS , 1983 .

[125]  W. Bonner,et al.  High quality InP grown by molecular beam epitaxy , 1982 .

[126]  Philip I Cohen,et al.  Damped oscillations in reflection high energy electron diffraction during GaAs MBE , 1983 .

[127]  M. Panish,et al.  Gas source molecular beam epitaxy of GaxIn1−xPyAs1−y , 1984 .

[128]  T. Mimura,et al.  A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions , 1980 .

[129]  Robert Chow,et al.  Source and elimination of oval defects on GaAs films grown by molecular beam epitaxy , 1981 .

[130]  M. Ilegems Beryllium doping and diffusion in molecular‐beam epitaxy of GaAs and AlxGa1−xAs , 1977 .

[131]  S. Komiya,et al.  Molecular beam epitaxy of GaAs using a mass‐separated, low‐energy As+ ion beam , 1985 .

[132]  Charles M. Falco,et al.  Molecular Beam Epitaxy For Multilayer Fabrication , 1988, Optics & Photonics.

[133]  S. Bedair,et al.  Growth of InAs1−xSbx (0, 1985 .

[134]  H. Okamoto,et al.  Room Temperature Operation of 650 nm AlGaAs Multi-Quantum-Well Laser Diode Grown by Molecular Beam Epitaxy , 1985 .

[135]  W. W. Snell,et al.  Single-crystal metal-semiconductor microjunctions prepared by molecular beam epitaxy , 1982 .

[136]  M. Konagai,et al.  Epitaxial growth of high quality ZnSe on Si substrates by molecular beam epitaxy and application to dc electroluminescent cells , 1985 .

[137]  R. Bachrach,et al.  Two‐stage arsenic cracking source with integral getter pump for MBE growth , 1983 .

[138]  J. Harris,et al.  Infra-red transmission spectroscopy of GaAs during molecular beam epitaxy , 1987 .

[139]  T. Ambridge,et al.  An automatic carrier concentration profile plotter using an electrochemical technique , 1975 .

[140]  J. Harris,et al.  Deep states in GaAs grown by molecular beam epitaxy , 1984 .

[141]  R. Rocheleau,et al.  Molecular beam distributions from high rate sources , 1985 .

[142]  J. Bean Silicon molecular beam epitaxy: Highlights of recent work , 1990 .

[143]  Takashi Nakayama,et al.  Classification and origins of GaAs oval defects grown by molecular beam epitaxy , 1987 .

[144]  N. Matsuo,et al.  Si-Beam Radiation Cleaning in Molecular-Beam Epitaxy , 1985 .

[145]  J. N. Walpole,et al.  MBE techniques for IV–VI optoelectronic devices , 1981 .

[146]  F. G. Allen,et al.  Evaporative antimony doping of silicon during molecular beam epitaxial growth , 1984 .

[147]  G. Stillman,et al.  GaAs with very low acceptor impurity background grown by molecular beam epitaxy , 1987 .

[148]  W. T. Moore,et al.  In situ growth rate measurements during molecular beam epitaxy using an optical pyrometer , 1989 .

[149]  Y. Ota n‐Type Doping Techniques in Silicon Molecular Beam Epitaxy by Simultaneous Arsenic Ion Implantation and by Antimony Evaporation , 1979 .

[150]  S. Datta,et al.  High resolution electron microscope study of epitaxial CdTe‐GaAs interfaces , 1985 .

[151]  John C. Bean,et al.  GexSi1−x/Si strained‐layer superlattice grown by molecular beam epitaxy , 1984 .

[152]  S. Wood,et al.  Microstructural studies of CdTe and InSb films grown by molecular beam epitaxy , 1984 .

[153]  H. Sunakawa,et al.  GaAs Atomic Layer Epitaxy by Hydride VPE , 1986 .

[154]  R. T. Tung,et al.  Growth of strained-layer semiconductor-metal-semiconductor heterostructures , 1986 .

[155]  N. Giles,et al.  Growth of high mobility n‐type CdTe by photoassisted molecular beam epitaxy , 1986 .

[156]  K. Sugiyama Growth of Sr1−xBaxF2 films on InAs by molecular beam epitaxy , 1984 .

[157]  James C. M. Hwang,et al.  Growth of high‐purity GaAs layers by molecular beam epitaxy , 1983 .

[158]  J. Harris,et al.  Molecular beam epitaxy of gallium arsenide using direct radiative substrate heating , 1986 .

[159]  M. Knudsen Experimentelle Bestimmung des Druckes gesttigter Quecksilberdmpfe bei 0 und hheren Temperaturen , 1909 .

[160]  John R. Vig UV/ozone cleaning of surfaces , 1976 .

[161]  S. Luryi,et al.  Avalanche gain in GexSi1-x/Si infrared waveguide detectors , 1986, IEEE Electron Device Letters.

[162]  T. Takagi,et al.  Ionized-cluster beam deposition and epitaxy as fabrication techniques for electron devices☆ , 1977 .

[163]  S. Sivananthan,et al.  Molecular beam epitaxial growth of a novel strained layer type III superlattice system: HgTe-ZnTe , 1986 .

[164]  J. Knall,et al.  Electrical properties of Si films doped with 200‐eV In+ ions during growth by molecular‐beam epitaxy , 1989 .

[165]  T. Chang,et al.  Doping and electrical properties of Mn in In1−x−yGaxAlyAs grown by molecular beam epitaxy , 1983 .

[166]  T. Ito,et al.  Origin of Surface Defects on Molecular Beam Epitaxially Grown GaAs , 1984 .

[167]  J. Woodall,et al.  Volatile metal‐oxide incorporation in layers of GaAs, Ga1−xAlxAs and related compounds grown by molecular beam epitaxy , 1981 .

[168]  P. B. Hart,et al.  Epitaxy of Compound Semiconductors by Flash Evaporation , 1963 .

[169]  A. Rockett,et al.  Indium incorporation during the growth of (100)Si by molecular beam epitaxy: Surface segregation and reconstruction , 1984 .

[170]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[171]  H. Ohno,et al.  Double heterostructure Ga0.47In0.53As MESFETs by MBE , 1980, IEEE Electron Device Letters.

[172]  M. Heiblum,et al.  Growth of molybdenum and tungsten on GaAs in a molecular beam epitaxy system , 1985 .

[173]  S. Svensson,et al.  Film thickness distribution at oblique evaporation , 1982 .

[174]  Hadis Morkoç,et al.  Dislocation reduction in epitaxial GaAs on Si(100) , 1986 .

[175]  Jean Massies,et al.  Substrate chemical etching prior to molecular‐beam epitaxy: An x‐ray photoelectron spectroscopy study of GaAs {001} surfaces etched by the H2SO4‐H2O2‐H2O solution , 1985 .

[176]  C. Foxon,et al.  Interaction kinetics of As2 and Ga on {100} GaAs surfaces , 1977 .

[177]  K. Kondo,et al.  Analysis of surface defects on GaAs grown by molecular beam epitaxy , 1986 .

[178]  Y. Ota Silicon molecular beam epitaxy , 1983 .

[179]  K. Ploog,et al.  GaAs sawtooth superlattice laser emitting at wavelengths greater than 0. 9 micron , 1985 .

[180]  S. Wood,et al.  A study of the growth conditions necessary for reproducible preparation of high perfection CdTe films on InSb by MBE , 1985 .

[181]  T. Yao,et al.  Molecular beam epitaxy of ZnSexTe1−x (0 ≲ x ≲ 1) , 1978 .

[182]  R. C. Henderson Silicon Cleaning with Hydrogen Peroxide Solutions: A High Energy Electron Diffraction and Auger Electron Spectroscopy Study , 1972 .

[183]  A. Cho Recent developments in molecular beam epitaxy (MBE) , 1979 .

[184]  K. H. Ploog,et al.  The effect of As2 and As4 molecular beam species on photoluminescence of molecular beam epitaxially grown GaAs , 1980 .

[185]  J. Harbison,et al.  Transistor action in novel GaAs/W/GaAs structures , 1986 .

[186]  W. Tsang Chemical beam epitaxy of InGaAs , 1985 .

[187]  M. Panish Molecular Beam Epitaxy of GaAs and InP with Gas Sources for As and P , 1980 .

[188]  J. Curless Molecular beam epitaxy beam flux modeling , 1985 .

[189]  S. Komiya,et al.  A Molecular and Ion-Beam Epitaxy System for the Growth of III-V Compound Semiconductors Using a Mass-Separated, Low-Energy Group-V Ion Beam , 1985 .

[190]  Kang L. Wang,et al.  Boron oxide interaction with silicon in silicon molecular beam epitaxy , 1986 .

[191]  U. Konig,et al.  Si–MBE: Growth and Sb doping , 1979 .

[192]  G. C. Osbourn,et al.  Strained-layer superlattices from lattice mismatched materials , 1982 .

[193]  J. Harris,et al.  Material effects on the cracking efficiency of molecular beam epitaxy arsenic cracking furnaces , 1986 .

[194]  Yutaka Ohmori,et al.  Room Temperature CW Operation of GaSb/AlGaSb MQW Laser Diodes Grown by MBE , 1985 .

[195]  A. Calawa On the use of AsH3 in the molecular beam epitaxial growth of GaAs , 1981 .

[196]  C. Wood ’’Surface exchange’’ doping of MBE GaAs from S and Se ’’captive sources’’ , 1978 .

[197]  T. Takagi,et al.  Vaporized-metal cluster formation and ionized-cluster beam deposition and epitaxy☆ , 1981 .

[198]  J. Kwo,et al.  MBE growth and properties of Fe3(Al,Si) on GaAs(100) , 1991 .

[199]  H. Usui,et al.  Low temperature epitaxy by ionized‐cluster beam , 1986 .

[200]  K. Board,et al.  Planar-doped barriers in GaAs by molecular beam epitaxy , 1980 .

[201]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[202]  J. Moison,et al.  Aluminum growth on (100) indium phosphide , 1985 .

[203]  J. Piqueras,et al.  Preparation of Carbon‐Free GaAs Surfaces: AES and RHEED Analysis , 1981 .

[204]  M. Konagai,et al.  Metalorganic Molecular-Beam Epitaxial Growth and Characterization of GaAs Using Trimethyl- and Triethyl-Gallium Sources , 1985 .

[205]  Long-range incommensurate magnetic order in a Dy-Y multilayer. , 1986 .

[206]  J. Bean,et al.  Silicon MBE apparatus for uniform high-rate deposition on standard format wafers , 1982 .

[207]  V. G. Keramidas,et al.  Molecular beam epitaxial growth of ultrathin buried metal layers: (Al,Ga)As/NiAl/(Al,Ga)As heterostructures , 1988 .

[208]  John C. Bean,et al.  Pseudomorphic growth of GexSi1−x on silicon by molecular beam epitaxy , 1984 .

[209]  A. Madhukar,et al.  Implications of the configuration‐dependent reactive incorporation growth process for the group V pressure and substrate temperature dependence of III‐V molecular beam epitaxial growth and the dynamics of the reflection high‐energy electron diffraction intensity , 1985 .

[210]  M. Kawashima,et al.  Gallium and Hydrogen Ion Irradiation during GaAs Molecular Beam Epitaxy , 1985 .

[211]  D. Lang,et al.  The effect of substrate growth temperature on deep levels in n‐AlxGa1−xAs grown by molecular beam epitaxy , 1981 .

[212]  R. Swartz,et al.  A technique for rapidly alternating boron and arsenic doping in ion‐implanted silicon molecular beam epitaxy , 1982 .

[213]  John C. Bean,et al.  Variation in misfit dislocation behavior as a function of strain in the GeSi/Si system , 1989 .

[214]  J. Tandon,et al.  Large‐Scale Growth of GaAs Epitaxial Layers by Metal Organic Chemical Vapor Deposition , 1985 .

[215]  Won-Tien Tsang,et al.  Elimination of oval defects in epilayers by using chemical beam epitaxy , 1985 .

[216]  Takashi Mimura,et al.  Extremely High Mobility of Two-Dimensional Electron Gas in Selectively Doped GaAs/N-AlGaAs Heterojunction Structures Grown by MBE , 1981 .

[217]  R. A. Wilson,et al.  UV–Ozone Cleaning of GaAs for MBE , 1982 .

[218]  James S. Harris,et al.  MBE growth of high critical temperature superconductors , 1989 .

[219]  I. M. Young,et al.  Molecular beam epitaxial growth of high structural perfection, heteroepitaxial CdTe films on InSb (001) , 1981 .

[220]  A. Cho,et al.  AlyGa1‐yAs‐AlxGa1‐x as laser structures for integrated optics grown by molecular‐beam epitaxy , 1977 .

[221]  W. Tsang High‐through‐put, high‐yield, and highly‐reproducible (AlGa)As double‐heterostructure laser wafers grown by molecular beam epitaxy , 1981 .

[222]  G. E. Becker,et al.  Dependence of residual damage on temperature during Ar+ sputter cleaning of silicon , 1977 .

[223]  Colin E. C. Wood,et al.  Schottky barrier heights of molecular beam epitaxial metal‐AlGaAs structures , 1981 .

[224]  D. L. Partin Diode lasers of lead‐europium‐selenide‐telluride grown by molecular beam epitaxy , 1983 .

[225]  J. Massies,et al.  X‐ray photoelectron spectroscopy study of the effects of ultrapure water on GaAs , 1985 .

[226]  R. Farrow,et al.  A study of the structure and properties of epitaxial silver deposited by atomic beam techniques on (001) InP , 1979 .

[227]  Hadis Morkoç,et al.  Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si , 1986 .

[228]  W. I. Wang Summary Abstract: Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si(100) and Ge(100) , 1985 .

[229]  D. E. Carter,et al.  In vitro solubility and in vivo toxicity of gallium arsenide. , 1984, Toxicology and applied pharmacology.

[230]  R. Hoffman,et al.  Epitaxial growth of lanthanide trifluorides by MBE , 1985 .

[231]  S. Datta,et al.  Wide gap II‐VI superlattices of ZnSe‐Zn1−xMnxSe , 1985 .

[232]  Anupam Madhukar,et al.  Monte‐Carlo simulations of MBE growth of III–V semiconductors: The growth kinetics, mechanism, and consequences for the dynamics of RHEED intensity , 1985 .

[233]  R. Malik,et al.  A subharmonic mixer using a planar doped barrier diode with symmetric conductance , 1982, IEEE Electron Device Letters.

[234]  D. Kisker,et al.  Molecular beam epitaxial growth of In1−xGaxAs1−ySby lattice matched to GaSb , 1985 .

[235]  M. Denhoff,et al.  In situ doping by As ion implantation of silicon grown by molecular-beam epitaxy , 1988 .

[236]  Y. Mitsui,et al.  High-power GaAs f.e.t. prepared by molecular-beam epitaxy , 1978 .

[237]  P. Blood,et al.  Capacitance-voltage profiling and the characterisation of III-V semiconductors using electrolyte barriers , 1986 .

[238]  W. E. Schroeder,et al.  GaAs IMPATT diodes prepared by molecular beam epitaxy , 1974 .

[239]  J. M. Meese,et al.  Photopumped laser operation of GaAs doping superlattices , 1986 .

[240]  T. Drummond,et al.  Low‐noise GaAs field‐effect transistors prepared by molecular beam epitaxy , 1981 .

[241]  J. Harbison,et al.  Molecular beam epitaxial growth of tungsten layers embedded in single crystal gallium arsenide , 1985 .

[242]  T. Fukunaga,et al.  Surface Defect Formation in GaAs Layers Grown on Intentionally Contaminated Substrate by Molecular Beam Epitaxy , 1985 .

[243]  Colin E. C. Wood,et al.  Integrated double heterostructure Ga0.47In0.53As photoreceiver with automatic gain control , 1981, IEEE Electron Device Letters.

[244]  R. Leibenguth,et al.  GexSi1−x strained‐layer heterostructure bipolar transistors , 1988 .

[245]  Stylianos Siskos,et al.  Epitaxial growth of lattice‐matched CaxSr1−xF2 on (100) and (110) GaAs substrates , 1984 .

[246]  J. Reno,et al.  Present status of molecular beam epitaxial growth and properties of HgTe–CdTe superlattices , 1986 .

[247]  D. Lang,et al.  Study of electron traps in n‐GaAs grown by molecular beam epitaxy , 1976 .

[248]  J. Zyskind,et al.  Chemical beam epitaxial growth of extremely high quality InGaAs on InP , 1986 .

[249]  W. Tsang Low‐current‐threshold and high‐lasing uniformity GaAs–AlxGa1−xAs double‐heterostructure lasers grown by molecular beam epitaxy , 1979 .

[250]  T. Tatsumi,et al.  Advanced Techniques to Decrease Defect Density in Molecular Beam Epitaxial Silicon Films , 1985 .

[251]  S. Katsumoto,et al.  In0.14Ga0.86As Solar Cells Grown by Molecular-Beam Epitaxy , 1985 .

[252]  D. Lang,et al.  High photoconductive gain in GexSi1−x/Si strained-layer superlattice detectors operating at λ-1.3 μm , 1986 .

[253]  J. F. Schetzina,et al.  Cd1−xMnxTe‐CdTe multilayers grown by molecular beam epitaxy , 1984 .

[254]  E. Parker,et al.  Potential‐Enhanced Doping of Si Grown by Molecular Beam Epitaxy , 1985 .

[255]  R. Bachrach,et al.  Morphological defects arising during MBE growth of GaAs , 1981 .

[256]  J. Faurie Growth and properties of HgTe-CdTe and other Hg-based superlattices , 1986 .

[257]  William D. Goodhue,et al.  Quantum‐well charge‐coupled devices for charge‐coupled device‐addressed multiple‐quantum‐well spatial light modulators , 1986 .

[258]  Salah M. Bedair,et al.  Atomic layer epitaxy of III‐V binary compounds , 1985 .

[259]  N. Salansky,et al.  Homo‐ and heteroepitaxial growth of high quality ZnSe by molecular beam epitaxy , 1985 .

[260]  D. Mars,et al.  An indium‐free mount for GaAs substrate heating during molecular beam epitaxial growth , 1986 .

[261]  R.E. Williams,et al.  Graded channel FET's: Improved linearity and noise figure , 1978, IEEE Transactions on Electron Devices.

[262]  N. Salansky,et al.  Surface structures and properties of ZnSe grown on (100)GaAs by molecular beam epitaxy , 1984 .

[263]  A. Y. Cho,et al.  Growth of III–V semiconductors by molecular beam epitaxy and their properties , 1983 .

[264]  W. Tsang,et al.  Selective area growth of GaAs/AlxGa1−xAs multilayer structures with molecular beam epitaxy using Si shadow masks , 1977 .

[265]  J. Puretz,et al.  Focused-ion-beam micromachined AlGaAs semiconductor laser mirrors , 1986 .

[266]  S. Sivananthan,et al.  CdTe-GaAs(100) interface: MBE growth, rheed and XPS characterization , 1986 .

[267]  H. Wang,et al.  Monolithic integrated photoreceiver implemented with GaAs/GaAlAs heterojunction bipolar phototransistor and transistors , 1986 .

[268]  J. R. Waldrop,et al.  Interface chemistry of metal‐GaAs Schottky‐barrier contacts , 1979 .

[269]  K. Ploog,et al.  Assessment of persistent-photoconductivity centers in MBE grown AlxGa1-xas using capacitance spectroscopy measurements , 1982 .

[270]  Haruo Nagai,et al.  Molecular beam epitaxial growth of InGaAlP on (100) GaAs , 1982 .

[271]  M. Tabe UV ozone cleaning of silicon substrates in silicon molecular beam epitaxy , 1984 .

[272]  S. Sivananthan,et al.  Molecular beam epitaxial growth of a novel strained-layer superlattice system: CdTe-ZnTe , 1986 .

[273]  Molecular Layer Epitaxy , 1985 .

[274]  D. L. Partin Lead–rare‐earth chalcogenides grown by molecular beam epitaxy , 1983 .

[275]  M. Willander,et al.  n‐Si/p‐Si1−xGex/n‐Si double‐heterojunction bipolar transistors , 1988 .

[276]  Leo Esaki,et al.  Structures Grown by Molecular Beam Epitaxy , 1973 .

[277]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[278]  C. Wood,et al.  Growth of Sb and InSb by molecular‐beam epitaxy , 1981 .

[279]  S. Datta,et al.  Molecular beam epitaxy of Cd1−xMnxTe , 1984 .

[280]  H. Morkoc,et al.  New high-speed (Al, Ga) as modulation doped field-effect transistors , 1985, IEEE Circuits and Devices Magazine.

[281]  T. Pearsall,et al.  Enhancement- and depletion-mode p-channel GexSi1-xmodulation-doped FET's , 1986, IEEE Electron Device Letters.

[282]  B. Joyce,et al.  A correlation between electron traps and growth processes in n‐GaAs prepared by molecular beam epitaxy , 1980 .

[283]  A. Cho,et al.  Nonalloyed and in situ Ohmic contacts to highly doped n‐type GaAs layers grown by molecular beam epitaxy (MBE) for field‐effect transistors , 1979 .

[284]  S. Wright,et al.  Summary Abstract: The MBE growth of GaAs free of oval defects , 1984 .

[285]  B. A. Joyce,et al.  Tin‐doping effects in GaAs films grown by molecular beam epitaxy , 1978 .

[286]  H. Stormer,et al.  Parameters for in situ growth of high Tc superconducting thin films using an oxygen plasma source , 1988 .

[287]  H. Sugiura Silicon molecular beam epitaxy with antimony ion doping , 1980 .

[288]  Toru Tatsumi,et al.  Si particle density reduction in Si molecular beam epitaxy using a deflection electrode , 1989 .

[289]  C. T. Foxon,et al.  The evaporation of GaAs under equilibrium and non-equilibrium conditions using a modulated beam technique , 1973 .

[290]  W. D. Johnston,et al.  Growth of Single‐Crystalline Epitaxial Group II Fluoride Films on InP ( 001 ) by Molecular‐Beam Epitaxy , 1983 .

[291]  M. Kodama,et al.  Influence of Substrate Preparation on the Morphology of GaSb Films Grown by Molecular Beam Epitaxy , 1985 .

[292]  T. Jackson,et al.  Ohmic contacts to n‐GaAs using graded band gap layers of Ga1−xInxAs grown by molecular beam epitaxy , 1981 .

[293]  H. Kroemer,et al.  Heterostructure bipolar transistors and integrated circuits , 1982, Proceedings of the IEEE.

[294]  G. E. Stillman,et al.  Electrical characterization of epitaxial layers , 1976 .

[295]  T. Ishikawa,et al.  MBE growth of extremely high‐quality GaAs–AlGaAs GRIN‐SCH lasers with a superlattice buffer layer , 1985 .

[296]  S. Bandy Low-noise microwave f.e.t.s fabricated by molecular-beam epitaxy , 1979 .

[297]  G. Stillman,et al.  Measurements of deep levels in high‐purity molecular beam epitaxial GaAs , 1985 .

[298]  Tanaka Haruo,et al.  MBE as a production technology for AlGaAs lasers , 1991 .

[299]  I. Schuller New class of layered materials , 1980 .

[300]  M. S. Abrahams,et al.  Etching of Dislocations on the Low‐Index Faces of GaAs , 1965 .

[301]  N. J. Shah,et al.  Gate-length dependence of the speed of SSI circuits using submicrometer selectively doped heterostructure transistor technology , 1986, IEEE Transactions on Electron Devices.

[302]  F. G. Allen,et al.  Boron doping in Si molecular beam epitaxy by co‐evaporation of B2O3 or doped silicon , 1986 .

[303]  B. F. Lewis,et al.  RHEED oscillation studies of MBE growth kinetics and lattice mismatch strain-induced effects during InGaAs growth on GaAs(100) , 1984 .

[304]  P. Fons,et al.  Electrical properties of Si(100) films doped with low-energy (≤150 eV) Sb ions during growth by molecular beam epitaxy , 1988 .

[305]  A. Cho Morphology of Epitaxial Growth of GaAs by a Molecular Beam Method: The Observation of Surface Structures , 1970 .

[306]  J. Reno,et al.  Molecular beam epitaxial growth and characterization of HgCdTe, HgZnTe, and HgMnTe on GaAs(100) , 1986 .

[307]  S. Noda,et al.  Effects of GaAs/AlAs superlattice buffer layers on selective area regrowth for GaAs/AlGaAs self‐aligned structure lasers , 1985 .

[308]  S. Hiyamizu,et al.  Improved Electron Mobility Higher than 106 cm2/Vs in Selectively Doped GaAs/N-AlGaAs Heterostructures Grown by MBE , 1983 .

[309]  H. Nagai,et al.  Gas Source MBE Growth of High-Quality InP Using Triethylindium and Phosphine , 1985 .

[310]  E. Mendez,et al.  Growth by molecular beam epitaxy and characterization of high purity GaAs and AlGaAs , 1983 .

[311]  H. Ohno,et al.  On the origin and elimination of macroscopic defects in MBE films , 1981 .

[312]  F. J. Morris,et al.  A new GaAs, GaP, and GaAsxP1−x vacuum deposition technique using arsine and phosphine gas , 1974 .

[313]  S. Hiyamizu,et al.  MBE Growth of High-Quality GaAs Using Triethylgallium as a Gallium Source , 1986 .

[314]  H. Kroemer,et al.  Reduction of oxides on silicon by heating in a gallium molecular beam at 800 °Ca) , 1980 .

[315]  Tomonori Ishikawa,et al.  MBE as a production technology for HEMT LSIs , 1989 .

[316]  J. Reno,et al.  II–VI semiconductor compounds: New superlattice systems for the future? , 1985 .

[317]  H. Hashimoto,et al.  Application of focused ion beam technology to maskless ion implantation in a molecular beam epitaxy grown GaAs or AlGaAs epitaxial layer for three‐dimensional pattern doping crystal growth , 1986 .

[318]  D. C. Johnson,et al.  Dependence of critical thickness on growth temperature in GexSi1−x/Si superlattices , 1988 .

[319]  Y. Mori,et al.  A low-noise microwave HEMT using MOCVD , 1986, IEEE Transactions on Electron Devices.

[320]  Y. G. Chai,et al.  A PH3 cracking furnace for molecular beam epitaxy , 1983 .

[321]  S. Sivananthan,et al.  Molecular beam epitaxial growth and characterization of 2‐in.‐diam Hg1−xCdxTe films on GaAs (100) substrates , 1988 .

[322]  S. Slempkes,et al.  InGaAsP superlattices grown by liquid‐phase epitaxy , 1986 .

[323]  J. Reno,et al.  Indium doping of HgCdTe layers during growth by molecular beam epitaxy , 1986 .

[324]  Y. Ota Silicon molecular beam epitaxy with simultaneous ion implant doping , 1980 .

[325]  D. C. Cameron,et al.  MBE‐grown fluoride films: A new class of epitaxial dielectrics , 1981 .

[326]  Observation of kinetically controlled monolayer step height distribution at normal and inverted interfaces in ultrathin GaAs/AlxGa1−xAs quantum wells , 1986 .

[327]  R. J. Malik,et al.  Subharmonic Planar Doped Barrier Mixer Conversion Loss Characteristics , 1983 .

[328]  W. Y. Leong,et al.  Potential enhanced Sb and As doping in Si molecular beam epitaxy , 1985 .

[329]  E. L. Meeks,et al.  Molecular beam epitaxial growth of CdTe, HgTe, and Hg1−xCdxTe alloys , 1984 .

[330]  G. Metze,et al.  GaAs MESFET's fabricated on monolithic GaAs/Si substrates , 1984, IEEE Electron Device Letters.

[331]  W. Tsang,et al.  Very low current threshold GaAs‐AlxGa1−xAs double‐heterostructure lasers grown by molecular beam epitaxy , 1980 .

[332]  P. J. Dobson,et al.  Dynamics of film growth of GaAs by MBE from Rheed observations , 1983 .

[333]  A. Cho,et al.  Growth of three-dimensional dielectric waveguides for integrated optics by molecular-beam-epitaxy method , 1972 .