Model-based fault diagnosis for hybrid systems: Application on chemical processes

The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless, this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering.

[1]  Alessandro Giua,et al.  Hybrid Petri Nets: a , 1996 .

[2]  Joseph Sifakis,et al.  Use of Petri nets for performance evaluation , 1977, Acta Cybern..

[3]  A. Willsky,et al.  Analytical redundancy and the design of robust failure detection systems , 1984 .

[4]  Alain Sargousse Noyau numérique orienté objet dédié à la simulations des systèmes dynamiques hybrides , 1999 .

[5]  Jean Marc Le Lann,et al.  Integration of a failure monitoring within a hybrid dynamic simulation environment , 2008 .

[6]  Feng Zhao,et al.  Monitoring and fault diagnosis of hybrid systems , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[8]  Silvio Simani,et al.  Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype , 2006 .

[9]  Amir Pnueli,et al.  Timed and Hybrid Statecharts and Their Textual Representation , 1992, FTRTFT.

[10]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[11]  Michael S. Branicky,et al.  Studies in hybrid systems: modeling, analysis, and control , 1996 .

[12]  R. K. Mehra,et al.  Correspondence item: An innovations approach to fault detection and diagnosis in dynamic systems , 1971 .

[13]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[14]  Liang-Sun Lee,et al.  Use of Fuzzy Cause-Effect Digraph for Resolution Fault Diagnosis for Process Plants. 1. Fuzzy Cause-Effect Digraph , 1995 .

[15]  Mats Andersson,et al.  Object-Oriented Modeling and Simulation of Hybrid Systems , 1994 .

[16]  Jean-Marc Le Lann,et al.  Integration of an object formalism within a hybrid dynamic simulation environment , 2004 .

[17]  Paul I. Barton,et al.  Modeling of combined discrete/continuous processes , 1994 .

[18]  Pieter J. Mosterman,et al.  Diagnosis of continuous valued systems in transient operating regions , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[19]  J. Buisson,et al.  Descriptor Systems for the Knowledge Modelling and Simulation of Hybrid Physical Systems Les Systèmes Descripteurs pour la Modélisation et la Simulation de Systèmes Physiques Hybrides , 1998 .

[20]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[21]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[22]  Janos Gertler,et al.  A new structural framework for parity equation-based failure detection and isolation , 1990, Autom..

[23]  Isabel Demongodin Generalised Batches Petri Net: Hybrid Model For High Speed Systems With Variable Delays , 2001, Discret. Event Dyn. Syst..

[24]  Jan Lunze,et al.  Diagnosis of Quantised Systems by Means of Timed Discrete-Event Representations , 2000, HSCC.

[25]  Paul R. White,et al.  THE ENHANCEMENT OF IMPULSIVE NOISE AND VIBRATION SIGNALS FOR FAULT DETECTION IN ROTATING AND RECIPROCATING MACHINERY , 1998 .

[26]  J. E. Rooda,et al.  Integration of The Discrete and The Continuous Behaviour in the Hybrid xSimulator , 1998, ESM.

[27]  Akash Deshpande,et al.  The SHIFT programming language for dynamic networks of hybrid automata , 1998 .

[28]  Johannes Schumacher,et al.  Proceedings of the European Control Conference , 1997 .

[29]  Gautam Biswas,et al.  Hybrid Systems Diagnosis , 2000, HSCC.

[30]  René David,et al.  Autonomous And Timed Continous Petri Nets , 1991, Applications and Theory of Petri Nets.

[31]  René Boel,et al.  Discrete event dynamic systems: Theory and applications. , 2002 .

[32]  Sebastian Engell,et al.  BaSiP — Batch process simulation with dynamically reconfigured process dynamics , 1996 .

[33]  R. Valette,et al.  Modeling and simulation of a hybrid system through PR/TR PN-DAE model , 1998 .

[34]  Daphne Koller,et al.  Sampling in Factored Dynamic Systems , 2001, Sequential Monte Carlo Methods in Practice.

[35]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part III: Process history based methods , 2003, Comput. Chem. Eng..

[36]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[37]  Jamal Daafouz,et al.  Systèmes dynamiques hybrides , 2007 .

[38]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[39]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[40]  A. Birouche Contribution sur la synthèse d'observateurs pour les systèmes dynamiques hybrides , 2006 .

[41]  X. Joulia,et al.  Introducing ATOM, the Applied Thermodynamics Object-oriented Model , 1996 .

[42]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[43]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[44]  Gilles Hétreux,et al.  De la simulation dynamique hybride vers la conduite de procédés batch et semi-continus , 2007 .