The core of games on ordered structures and graphs

In cooperative games, the core is the most popular solution concept, and its properties are well known. In the classical setting of cooperative games, it is generally assumed that all coalitions can form, i.e., they are all feasible. In many situations, this assumption is too strong and one has to deal with some unfeasible coalitions. Defining a game on a subcollection of the power set of the set of players has many implications on the mathematical structure of the core, depending on the precise structure of the subcollection of feasible coalitions. Many authors have contributed to this topic, and we give a unified view of these different results. Copyright Springer Science+Business Media New York 2013

[1]  Gabrielle Demange,et al.  On Group Stability in Hierarchies and Networks , 2004, Journal of Political Economy.

[2]  Michel Grabisch,et al.  The bounded core for games with precedence constraints , 2012, Ann. Oper. Res..

[3]  Gerard van der Laan,et al.  A class of consistent share functions for games in coalition structure , 2005, Games Econ. Behav..

[4]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[5]  G. Owen,et al.  Games with permission structures: The conjunctive approach , 1992 .

[6]  René van den Brink On hierarchies and communication , 2012, Soc. Choice Welf..

[7]  Tatsuro Ichiishi,et al.  Super-modularity: Applications to convex games and to the greedy algorithm for LP , 1981 .

[8]  Morton D. Davis,et al.  Existence of stable payoff configurations for cooperative games , 1963 .

[9]  D. Schmeidler The Nucleolus of a Characteristic Function Game , 1969 .

[10]  A. Nouweland,et al.  On the convexity of communication games , 1991 .

[11]  Jesús Mario Bilbao,et al.  The core of games on convex geometries , 1999, Eur. J. Oper. Res..

[12]  Michel Grabisch,et al.  An axiomatization of entropy of capacities on set systems , 2008, Eur. J. Oper. Res..

[13]  G. Laan,et al.  Component efficient solutions in line-graph games with applications , 2007 .

[14]  Michel Grabisch,et al.  Values on regular games under Kirchhoff's laws , 2009, Math. Soc. Sci..

[15]  G. Demange Intermediate Preferences and Stable Coalition Structures , 1994 .

[16]  W. Lucas,et al.  N‐person games in partition function form , 1963 .

[17]  Hans Reijnierse,et al.  Γ-component additive games , 1995 .

[18]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[19]  Hans Peters,et al.  Orderings, excess functions, and the nucleolus , 1998 .

[20]  R. Myerson Conference structures and fair allocation rules , 1978 .

[21]  Michel Grabisch,et al.  Monge extensions of cooperation and communication structures , 2010, Eur. J. Oper. Res..

[22]  G. Grätzer General Lattice Theory , 1978 .

[23]  B. Peleg,et al.  Introduction to the Theory of Cooperative Games , 1983 .

[24]  David Schmeidler,et al.  Cores of Exact Games, I* , 1972 .

[25]  Ulrich Faigle,et al.  Algorithmic principles of mathematical programming , 2002 .

[26]  Michel Grabisch,et al.  The restricted core of games on distributive lattices: how to share benefits in a hierarchy , 2011, Math. Methods Oper. Res..

[27]  Ulrich Faigle Cores of games with restricted cooperation , 1989, ZOR Methods Model. Oper. Res..

[28]  Hans Reijnierse,et al.  Note On the core of a collection of coalitions , 1998, Int. J. Game Theory.

[29]  A. Khmelnitskaya Values for rooted-tree and sink-tree digraph games and sharing a river , 2008 .

[30]  Alain Chateauneuf,et al.  Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[31]  G. Owen VALUES OF GAMES WITH A PRIORI UNIONS , 1977 .

[32]  D. Felsenthal,et al.  The Measurement of Voting Power: Theory and Practice, Problems and Paradoxes , 1998 .

[33]  R. Myerson Values of games in partition function form , 1977 .

[34]  J. Richard,et al.  Differential Payments within a Bidder Coalition and the Shapley Value , 1990 .

[35]  G. Choquet Theory of capacities , 1954 .

[36]  Jesús Mario Bilbao,et al.  Cooperative games on antimatroids , 2004, Discret. Math..

[37]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[38]  Jesús Mario Bilbao,et al.  A unified approach to restricted games , 2001 .

[39]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[40]  L. Shapley Cores of convex games , 1971 .

[41]  G. Ziegler Lectures on Polytopes , 1994 .

[42]  Jesús Mario Bilbao,et al.  Axiomatizations of the Shapley value for games on augmenting systems , 2009, Eur. J. Oper. Res..

[43]  Jean Derks,et al.  On the Harsanyi payoff vectors and Harsanyi imputations , 2010 .

[44]  Herbert E. Scarf,et al.  A LIMIT THEOREM ON THE CORE OF AN ECONOMY , 1963, Classics in Game Theory.

[45]  J. M. Bilbao,et al.  Cooperative Games on Combinatorial Structures , 2000 .

[46]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[47]  Paul H. Edelman,et al.  The theory of convex geometries , 1985 .

[48]  Yves Sprumont,et al.  Sharing a River , 2002, J. Econ. Theory.

[49]  Mamoru Kaneko,et al.  Cores of partitioning games , 1982, Math. Soc. Sci..

[50]  G. Owen Values of graph-restricted games , 1986 .

[51]  Peter Borm,et al.  On the Position Value for Communication Situations , 1992, SIAM J. Discret. Math..

[52]  Michel Grabisch Ensuring the boundedness of the core of games with restricted cooperation , 2011, Ann. Oper. Res..

[53]  U. Faigle,et al.  The Shapley value for cooperative games under precedence constraints , 1992 .

[54]  T. Driessen Cooperative Games, Solutions and Applications , 1988 .

[55]  G. Birkhoff,et al.  On the combination of subalgebras , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.

[56]  R. Branzei,et al.  Models in cooperative game theory : crisp, fuzzy, and multi-choice games , 2005 .

[57]  Jesús Mario Bilbao Cooperative Games under Augmenting Systems , 2003, SIAM J. Discret. Math..

[58]  Jean J. M. Derks,et al.  Hierarchical organization structures and constraints on coalition formation , 1995 .

[59]  Roger B. Myerson,et al.  Graphs and Cooperation in Games , 1977, Math. Oper. Res..

[60]  R. Aumann,et al.  THE BARGAINING SET FOR COOPERATIVE GAMES , 1961 .

[61]  P. Jean-Jacques Herings,et al.  The average tree solution for cycle-free graph games , 2008, Games Econ. Behav..

[62]  Michel Grabisch,et al.  The core of games on ordered structures and graphs , 2009, 4OR.

[63]  Sylvain Béal,et al.  Weighted component fairness for forest games , 2012, Math. Soc. Sci..

[64]  Guillermo Owen,et al.  Power Indices and Coalition Formation , 2001 .

[65]  S. Fujishige,et al.  A NOTE ON SUBMODULAR FUNCTIONS ON DISTRIBUTIVE LATTICES , 1983 .

[66]  L. Shapley A Value for n-person Games , 1988 .

[67]  A.M.A. van Deemen,et al.  Coalition Formation and Social Choice , 1997 .

[68]  John C. Harsanyi,et al.  A Simplified Bargaining Model for the n-Person Cooperative Game , 1963 .

[69]  Sylvain Béal,et al.  Rooted-tree solutions for tree games , 2010, Eur. J. Oper. Res..

[70]  Sylvain Béal,et al.  Average tree solutions and the distribution of Harsanyi dividends , 2011, Int. J. Game Theory.

[71]  Michel Grabisch,et al.  A discrete Choquet integral for ordered systems , 2011, Fuzzy Sets Syst..

[72]  Shlomo Weber,et al.  Strongly balanced cooperative games , 1992 .

[73]  R. J. Aumann,et al.  Cooperative games with coalition structures , 1974 .

[74]  P. Borm,et al.  Allocation rules for hypergraph communication situations , 1992 .

[75]  Morton D. Davis,et al.  The kernel of a cooperative game , 1965 .

[76]  Jesús Mario Bilbao,et al.  The core and the Weber set of games on augmenting systems , 2010, Discret. Appl. Math..

[77]  R. P. Dilworth Review: G. Birkhoff, Lattice theory , 1950 .