Acceleration toward polarization singularity inspired by relativistic E×B drift

The relativistic trajectory of a charged particle driven by the Lorentz force is different from the classical one, by velocity-dependent relativistic acceleration term. Here we show that the evolution of optical polarization states near the polarization singularity can be described in analogy to the relativistic dynamics of charged particles. A phase transition in parity-time symmetric potentials is then interpreted in terms of the competition between electric and magnetic ‘pseudo’-fields applied to polarization states. Based on this Lorentz pseudo-force representation, we reveal that zero Lorentz pseudo-force is the origin of recently reported strong polarization convergence to the singular state at the exceptional point. We also demonstrate the deterministic design of achiral and directional eigenstates at the exceptional point, allowing an anomalous linear polarizer which operates orthogonal to forward and backward waves. Our results linking parity-time symmetry and relativistic electrodynamics show that previous PT-symmetric potentials for the polarization singularity with a chiral eigenstate are the subset of optical potentials for the E×B “polarization” drift.

[1]  H. L. Harney,et al.  The chirality of exceptional points , 2001 .

[2]  N. Park,et al.  Bloch-like waves in random-walk potentials based on supersymmetry , 2015, Nature Communications.

[3]  N. Park,et al.  Metadisorder for designer light in random systems , 2015, Science Advances.

[4]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[5]  Ragnar Fleischmann,et al.  Exponentially fragile PT symmetry in lattices with localized eigenmodes. , 2009, Physical review letters.

[6]  N. Park,et al.  Spatiospectral separation of exceptional points inPT-symmetric optical potentials , 2012 .

[7]  U. Weiss Quantum Dissipative Systems , 1993 .

[8]  S. Tewari,et al.  Exceptional point description of one-dimensional chiral topological superconductors/superfluids in BDI class , 2015, 1502.03110.

[9]  Shachar Klaiman,et al.  Visualization of branch points in PT-symmetric waveguides. , 2008, Physical review letters.

[10]  Bypassing the bandwidth theorem with PT symmetry , 2012, 1205.1847.

[11]  T. Kottos,et al.  Four-port photonic structures with mirror-time reversal symmetries , 2016 .

[12]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[13]  Sunkyu Yu,et al.  One-way optical modal transition based on causality in momentum space. , 2015, Optics express.

[14]  Matthias Heinrich,et al.  Supersymmetry-generated complex optical potentials with real spectra , 2013, 1305.1689.

[15]  Stefan Rotter,et al.  Parity-time symmetry from stacking purely dielectric and magnetic slabs , 2015 .

[16]  S. P. Klevansky,et al.  Instantaneous modulations in time-varying complex optical potentials , 2015, 1503.04720.

[17]  Simon A. R. Horsley,et al.  Spatial Kramers–Kronig relations and the reflection of waves , 2015, Nature Photonics.

[18]  PT -Symmetric Representations of Fermionic Algebras , 2011, 1104.4156.

[19]  Sunkyu Yu,et al.  Low-dimensional optical chirality in complex potentials , 2014, 1409.0180.

[20]  Ying Wu,et al.  PT-Symmetry-Breaking Chaos in Optomechanics. , 2015, Physical review letters.

[21]  Nadine Gottschalk,et al.  Fundamentals Of Photonics , 2016 .

[22]  Heidelberg,et al.  Observation of a chiral state in a microwave cavity. , 2002, Physical review letters.

[23]  Ling Lu,et al.  Spawning rings of exceptional points out of Dirac cones , 2015, Nature.

[24]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[25]  Xuefeng Zhu,et al.  PT-symmetric acoustics , 2015 .

[26]  Andrea Alù,et al.  An invisible acoustic sensor based on parity-time symmetry , 2015, Nature Communications.

[27]  S. Takeuchi Relativistic E x B acceleration. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Hans Stephani,et al.  Relativity : an introduction to special and general relativity , 2004 .

[29]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[30]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[31]  S. Furumi,et al.  Glass‐Forming Cholesteric Liquid Crystal Oligomers for New Tunable Solid‐State Laser , 2010, Advanced materials.

[32]  S. Longhi Quantum‐optical analogies using photonic structures , 2009 .

[33]  Supriyo Bandyopadhyay,et al.  Introduction to spintronics , 2008 .

[34]  Dorje C Brody,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[35]  Chapter 2 – Transport and Rate Processes , 2014 .

[36]  Harsh Mathur,et al.  Non-Hermitian quantum Hamiltonians with PT symmetry , 2009, 0908.4255.

[37]  Yasar Demirel,et al.  Nonequilibrium Thermodynamics. Transport and Rate Processes in Physical, Chemical and Biological Systems. 4th Edition , 2018 .

[38]  Ismo V. Lindell,et al.  Electromagnetic Waves in Chiral and Bi-Isotropic Media , 1994 .

[39]  J M Lee,et al.  Reconfigurable directional lasing modes in cavities with generalized PT symmetry. , 2014, Physical review letters.

[40]  Ipsita Mandal Exceptional points for chiral Majorana fermions in arbitrary dimensions , 2015, 1503.03839.

[41]  Eric Plum,et al.  Giant nonlinear optical activity in a plasmonic metamaterial , 2012, Nature Communications.

[42]  Jiaguang Han,et al.  Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces. , 2014, Physical review letters.

[43]  P. Sewell,et al.  Non-stationary electromagnetics , 2012 .

[44]  H. Kuball Circular Dichroism and Linear Dichroism , 1999 .

[45]  A. Hayrapetyan,et al.  Electromagnetic wave propagation in spatially homogeneous yet smoothly time-varying dielectric media , 2015, 1511.05824.

[46]  Jensen Li,et al.  Effective Spontaneous PT-symmetry Breaking in Hybridized Metamaterials , 2012, 1210.2027.

[47]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[48]  A. Hayrapetyan,et al.  Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium , 2013 .

[49]  N. Park,et al.  Spectral separation of optical spin based on antisymmetric Fano resonances , 2015, Scientific Reports.

[50]  Xiang Zhang,et al.  Adiabatic elimination-based coupling control in densely packed subwavelength waveguides , 2015, Nature Communications.

[51]  D. Waxman A model of population genetics and its mathematical relation to quantum theory , 2002 .

[52]  Tsampikos Kottos,et al.  Experimental study of active LRC circuits with PT symmetries , 2011, 1109.2913.

[53]  Xue-Feng Zhu,et al.  P T -Symmetric Acoustics , 2014 .

[54]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.